|
""" |
|
1.1.1版本兼容 |
|
https://github.com/fishaudio/Bert-VITS2/releases/tag/1.1.1 |
|
""" |
|
import torch |
|
import commons |
|
from .text.cleaner import clean_text, clean_text_fix |
|
from .text import cleaned_text_to_sequence |
|
from .text import get_bert, get_bert_fix |
|
|
|
|
|
def get_text(text, language_str, hps, device): |
|
norm_text, phone, tone, word2ph = clean_text(text, language_str) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert = get_bert(norm_text, word2ph, language_str, device) |
|
del word2ph |
|
assert bert.shape[-1] == len(phone), phone |
|
|
|
if language_str == "ZH": |
|
bert = bert |
|
ja_bert = torch.zeros(768, len(phone)) |
|
elif language_str == "JP": |
|
ja_bert = bert |
|
bert = torch.zeros(1024, len(phone)) |
|
else: |
|
bert = torch.zeros(1024, len(phone)) |
|
ja_bert = torch.zeros(768, len(phone)) |
|
|
|
assert bert.shape[-1] == len( |
|
phone |
|
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
return bert, ja_bert, phone, tone, language |
|
|
|
|
|
def get_text_fix(text, language_str, hps, device): |
|
norm_text, phone, tone, word2ph = clean_text_fix(text, language_str) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert = get_bert_fix(norm_text, word2ph, language_str, device) |
|
del word2ph |
|
assert bert.shape[-1] == len(phone), phone |
|
|
|
if language_str == "ZH": |
|
bert = bert |
|
ja_bert = torch.zeros(768, len(phone)) |
|
elif language_str == "JP": |
|
ja_bert = bert |
|
bert = torch.zeros(1024, len(phone)) |
|
else: |
|
bert = torch.zeros(1024, len(phone)) |
|
ja_bert = torch.zeros(768, len(phone)) |
|
|
|
assert bert.shape[-1] == len( |
|
phone |
|
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
return bert, ja_bert, phone, tone, language |
|
|
|
|
|
def infer( |
|
text, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid, |
|
language, |
|
hps, |
|
net_g, |
|
device, |
|
): |
|
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps, device) |
|
with torch.no_grad(): |
|
x_tst = phones.to(device).unsqueeze(0) |
|
tones = tones.to(device).unsqueeze(0) |
|
lang_ids = lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
ja_bert = ja_bert.to(device).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
del phones |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) |
|
audio = ( |
|
net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
speakers, |
|
tones, |
|
lang_ids, |
|
bert, |
|
ja_bert, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
length_scale=length_scale, |
|
)[0][0, 0] |
|
.data.cpu() |
|
.float() |
|
.numpy() |
|
) |
|
del x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return audio |
|
|
|
|
|
def infer_fix( |
|
text, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid, |
|
language, |
|
hps, |
|
net_g, |
|
device, |
|
): |
|
bert, ja_bert, phones, tones, lang_ids = get_text_fix(text, language, hps, device) |
|
with torch.no_grad(): |
|
x_tst = phones.to(device).unsqueeze(0) |
|
tones = tones.to(device).unsqueeze(0) |
|
lang_ids = lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
ja_bert = ja_bert.to(device).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
del phones |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) |
|
audio = ( |
|
net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
speakers, |
|
tones, |
|
lang_ids, |
|
bert, |
|
ja_bert, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
length_scale=length_scale, |
|
)[0][0, 0] |
|
.data.cpu() |
|
.float() |
|
.numpy() |
|
) |
|
del x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return audio |
|
|