|
import argparse |
|
from multiprocessing import Pool, cpu_count |
|
|
|
import torch |
|
import torch.multiprocessing as mp |
|
from tqdm import tqdm |
|
|
|
import utils |
|
from config import config |
|
from clap_wrapper import get_clap_audio_feature |
|
import librosa |
|
import os |
|
|
|
os.environ["OMP_NUM_THREADS"] = "1" |
|
os.environ["MKL_NUM_THREADS"] = "1" |
|
|
|
|
|
def process_line(line): |
|
device = config.emo_gen_config.device |
|
if config.emo_gen_config.use_multi_device: |
|
rank = mp.current_process()._identity |
|
rank = rank[0] if len(rank) > 0 else 0 |
|
if torch.cuda.is_available(): |
|
gpu_id = rank % torch.cuda.device_count() |
|
device = torch.device(f"cuda:{gpu_id}") |
|
else: |
|
device = torch.device("cpu") |
|
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|") |
|
|
|
clap_path = wav_path.replace(".WAV", ".wav").replace(".wav", ".emo.pt") |
|
if os.path.isfile(clap_path): |
|
return |
|
|
|
audio = librosa.load(wav_path, 48000)[0] |
|
|
|
|
|
clap = get_clap_audio_feature(audio, device) |
|
torch.save(clap, clap_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-c", "--config", type=str, default=config.emo_gen_config.config_path |
|
) |
|
parser.add_argument( |
|
"--num_processes", type=int, default=config.emo_gen_config.num_processes |
|
) |
|
args, _ = parser.parse_known_args() |
|
config_path = args.config |
|
hps = utils.get_hparams_from_file(config_path) |
|
lines = [] |
|
with open(hps.data.training_files, encoding="utf-8") as f: |
|
lines.extend(f.readlines()) |
|
|
|
with open(hps.data.validation_files, encoding="utf-8") as f: |
|
lines.extend(f.readlines()) |
|
if len(lines) != 0: |
|
num_processes = min(args.num_processes, cpu_count()) |
|
with Pool(processes=num_processes) as pool: |
|
for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)): |
|
pass |
|
|
|
print(f"clap生成完毕!, 共有{len(lines)}个emo.pt生成!") |
|
|