|
from onnx_modules.V220_OnnxInference import OnnxInferenceSession |
|
import numpy as np |
|
Session = OnnxInferenceSession( |
|
{ |
|
"enc" : "onnx/BertVits2.2PT/BertVits2.2PT_enc_p.onnx", |
|
"emb_g" : "onnx/BertVits2.2PT/BertVits2.2PT_emb.onnx", |
|
"dp" : "onnx/BertVits2.2PT/BertVits2.2PT_dp.onnx", |
|
"sdp" : "onnx/BertVits2.2PT/BertVits2.2PT_sdp.onnx", |
|
"flow" : "onnx/BertVits2.2PT/BertVits2.2PT_flow.onnx", |
|
"dec" : "onnx/BertVits2.2PT/BertVits2.2PT_dec.onnx" |
|
}, |
|
Providers = ["CPUExecutionProvider"] |
|
) |
|
|
|
|
|
x = np.array( |
|
[ |
|
0, |
|
97, |
|
0, |
|
8, |
|
0, |
|
78, |
|
0, |
|
8, |
|
0, |
|
76, |
|
0, |
|
37, |
|
0, |
|
40, |
|
0, |
|
97, |
|
0, |
|
8, |
|
0, |
|
23, |
|
0, |
|
8, |
|
0, |
|
74, |
|
0, |
|
26, |
|
0, |
|
104, |
|
0, |
|
] |
|
) |
|
tone = np.zeros_like(x) |
|
language = np.zeros_like(x) |
|
sid = np.array([0]) |
|
bert = np.random.randn(x.shape[0], 1024) |
|
ja_bert = np.random.randn(x.shape[0], 1024) |
|
en_bert = np.random.randn(x.shape[0], 1024) |
|
emo = np.random.randn(512, 1) |
|
|
|
audio = Session( |
|
x, |
|
tone, |
|
language, |
|
bert, |
|
ja_bert, |
|
en_bert, |
|
emo, |
|
sid |
|
) |
|
|
|
print(audio) |
|
|