|
from collections import OrderedDict |
|
from text.symbols import symbols |
|
import torch |
|
|
|
from tools.log import logger |
|
import utils |
|
from models import SynthesizerTrn |
|
import os |
|
|
|
|
|
def copyStateDict(state_dict): |
|
if list(state_dict.keys())[0].startswith("module"): |
|
start_idx = 1 |
|
else: |
|
start_idx = 0 |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = ",".join(k.split(".")[start_idx:]) |
|
new_state_dict[name] = v |
|
return new_state_dict |
|
|
|
|
|
def removeOptimizer(config: str, input_model: str, ishalf: bool, output_model: str): |
|
hps = utils.get_hparams_from_file(config) |
|
|
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
) |
|
|
|
optim_g = torch.optim.AdamW( |
|
net_g.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps, |
|
) |
|
|
|
state_dict_g = torch.load(input_model, map_location="cpu") |
|
new_dict_g = copyStateDict(state_dict_g) |
|
keys = [] |
|
for k, v in new_dict_g["model"].items(): |
|
if "enc_q" in k: |
|
continue |
|
keys.append(k) |
|
|
|
new_dict_g = ( |
|
{k: new_dict_g["model"][k].half() for k in keys} |
|
if ishalf |
|
else {k: new_dict_g["model"][k] for k in keys} |
|
) |
|
|
|
torch.save( |
|
{ |
|
"model": new_dict_g, |
|
"iteration": 0, |
|
"optimizer": optim_g.state_dict(), |
|
"learning_rate": 0.0001, |
|
}, |
|
output_model, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-c", "--config", type=str, default="configs/config.json") |
|
parser.add_argument("-i", "--input", type=str) |
|
parser.add_argument("-o", "--output", type=str, default=None) |
|
parser.add_argument( |
|
"-hf", "--half", action="store_true", default=False, help="Save as FP16" |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
output = args.output |
|
|
|
if output is None: |
|
import os.path |
|
|
|
filename, ext = os.path.splitext(args.input) |
|
half = "_half" if args.half else "" |
|
output = filename + "_release" + half + ext |
|
|
|
removeOptimizer(args.config, args.input, args.half, output) |
|
logger.info(f"压缩模型成功, 输出模型: {os.path.abspath(output)}") |
|
|