gen / oldVersion /V210 /__init__.py
XzJosh's picture
Upload 180 files
1cf1e13
raw
history blame
6.96 kB
"""
@Desc: 2.1版本兼容 对应版本 v2.1 Emo and muti-lang optimize
"""
import torch
import commons
from .text import cleaned_text_to_sequence, get_bert
from .text.cleaner import clean_text
from .emo_gen import get_emo
def get_text(text, language_str, hps, device):
# 在此处实现当前版本的get_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.zeros(1024, len(phone))
en_bert = torch.zeros(1024, len(phone))
elif language_str == "JP":
bert = torch.zeros(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.zeros(1024, len(phone))
elif language_str == "EN":
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def get_emo_(reference_audio, emotion):
emo = (
torch.from_numpy(get_emo(reference_audio))
if reference_audio
else torch.Tensor([emotion])
)
return emo
def infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
reference_audio=None,
emotion=None,
skip_start=False,
skip_end=False,
):
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text, language, hps, device
)
emo = get_emo_(reference_audio, emotion)
if skip_start:
phones = phones[1:]
tones = tones[1:]
lang_ids = lang_ids[1:]
bert = bert[:, 1:]
ja_bert = ja_bert[:, 1:]
en_bert = en_bert[:, 1:]
if skip_end:
phones = phones[:-1]
tones = tones[:-1]
lang_ids = lang_ids[:-1]
bert = bert[:, :-1]
ja_bert = ja_bert[:, :-1]
en_bert = en_bert[:, :-1]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
emo,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio
def infer_multilang(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
reference_audio=None,
emotion=None,
skip_start=False,
skip_end=False,
):
bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], []
emo = get_emo_(reference_audio, emotion)
for idx, (txt, lang) in enumerate(zip(text, language)):
skip_start = (idx != 0) or (skip_start and idx == 0)
skip_end = (idx != len(text) - 1) or (skip_end and idx == len(text) - 1)
(
temp_bert,
temp_ja_bert,
temp_en_bert,
temp_phones,
temp_tones,
temp_lang_ids,
) = get_text(txt, lang, hps, device)
if skip_start:
temp_bert = temp_bert[:, 1:]
temp_ja_bert = temp_ja_bert[:, 1:]
temp_en_bert = temp_en_bert[:, 1:]
temp_phones = temp_phones[1:]
temp_tones = temp_tones[1:]
temp_lang_ids = temp_lang_ids[1:]
if skip_end:
temp_bert = temp_bert[:, :-1]
temp_ja_bert = temp_ja_bert[:, :-1]
temp_en_bert = temp_en_bert[:, :-1]
temp_phones = temp_phones[:-1]
temp_tones = temp_tones[:-1]
temp_lang_ids = temp_lang_ids[:-1]
bert.append(temp_bert)
ja_bert.append(temp_ja_bert)
en_bert.append(temp_en_bert)
phones.append(temp_phones)
tones.append(temp_tones)
lang_ids.append(temp_lang_ids)
bert = torch.concatenate(bert, dim=1)
ja_bert = torch.concatenate(ja_bert, dim=1)
en_bert = torch.concatenate(en_bert, dim=1)
phones = torch.concatenate(phones, dim=0)
tones = torch.concatenate(tones, dim=0)
lang_ids = torch.concatenate(lang_ids, dim=0)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
emo = emo.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
emo,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio