|
""" |
|
版本管理、兼容推理及模型加载实现。 |
|
版本说明: |
|
1. 版本号与github的release版本号对应,使用哪个release版本训练的模型即对应其版本号 |
|
2. 请在模型的config.json中显示声明版本号,添加一个字段"version" : "你的版本号" |
|
特殊版本说明: |
|
1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复 |
|
2.2:当前版本 |
|
""" |
|
import torch |
|
import commons |
|
from text import cleaned_text_to_sequence, get_bert |
|
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature |
|
from text.cleaner import clean_text |
|
import utils |
|
import numpy as np |
|
|
|
from models import SynthesizerTrn |
|
from text.symbols import symbols |
|
|
|
from oldVersion.V210.models import SynthesizerTrn as V210SynthesizerTrn |
|
from oldVersion.V210.text import symbols as V210symbols |
|
from oldVersion.V200.models import SynthesizerTrn as V200SynthesizerTrn |
|
from oldVersion.V200.text import symbols as V200symbols |
|
from oldVersion.V111.models import SynthesizerTrn as V111SynthesizerTrn |
|
from oldVersion.V111.text import symbols as V111symbols |
|
from oldVersion.V110.models import SynthesizerTrn as V110SynthesizerTrn |
|
from oldVersion.V110.text import symbols as V110symbols |
|
from oldVersion.V101.models import SynthesizerTrn as V101SynthesizerTrn |
|
from oldVersion.V101.text import symbols as V101symbols |
|
|
|
from oldVersion import V111, V110, V101, V200, V210 |
|
|
|
|
|
latest_version = "2.2" |
|
|
|
|
|
SynthesizerTrnMap = { |
|
"2.1": V210SynthesizerTrn, |
|
"2.0.2-fix": V200SynthesizerTrn, |
|
"2.0.1": V200SynthesizerTrn, |
|
"2.0": V200SynthesizerTrn, |
|
"1.1.1-fix": V111SynthesizerTrn, |
|
"1.1.1": V111SynthesizerTrn, |
|
"1.1": V110SynthesizerTrn, |
|
"1.1.0": V110SynthesizerTrn, |
|
"1.0.1": V101SynthesizerTrn, |
|
"1.0": V101SynthesizerTrn, |
|
"1.0.0": V101SynthesizerTrn, |
|
} |
|
|
|
symbolsMap = { |
|
"2.1": V210symbols, |
|
"2.0.2-fix": V200symbols, |
|
"2.0.1": V200symbols, |
|
"2.0": V200symbols, |
|
"1.1.1-fix": V111symbols, |
|
"1.1.1": V111symbols, |
|
"1.1": V110symbols, |
|
"1.1.0": V110symbols, |
|
"1.0.1": V101symbols, |
|
"1.0": V101symbols, |
|
"1.0.0": V101symbols, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_net_g(model_path: str, version: str, device: str, hps): |
|
if version != latest_version: |
|
net_g = SynthesizerTrnMap[version]( |
|
len(symbolsMap[version]), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
).to(device) |
|
else: |
|
|
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model, |
|
).to(device) |
|
_ = net_g.eval() |
|
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) |
|
return net_g |
|
|
|
|
|
def get_text(text, language_str, bert, hps, device): |
|
|
|
norm_text, phone, tone, word2ph = clean_text(text, language_str) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
|
|
bert_ori = bert[language_str].get_bert_feature(norm_text, word2ph, device) |
|
del word2ph |
|
assert bert_ori.shape[-1] == len(phone), phone |
|
|
|
if language_str == "ZH": |
|
bert = bert_ori |
|
ja_bert = torch.randn(1024, len(phone)) |
|
en_bert = torch.randn(1024, len(phone)) |
|
elif language_str == "JP": |
|
bert = torch.randn(1024, len(phone)) |
|
ja_bert = bert_ori |
|
en_bert = torch.randn(1024, len(phone)) |
|
elif language_str == "EN": |
|
bert = torch.randn(1024, len(phone)) |
|
ja_bert = torch.randn(1024, len(phone)) |
|
en_bert = bert_ori |
|
else: |
|
raise ValueError("language_str should be ZH, JP or EN") |
|
|
|
assert bert.shape[-1] == len( |
|
phone |
|
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
return bert, ja_bert, en_bert, phone, tone, language |
|
|
|
|
|
def infer( |
|
text, |
|
emotion, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid, |
|
language, |
|
hps, |
|
net_g, |
|
device, |
|
bert=None, |
|
clap=None, |
|
reference_audio=None, |
|
skip_start=False, |
|
skip_end=False, |
|
): |
|
|
|
|
|
inferMap_V3 = { |
|
"2.1": V210.infer, |
|
} |
|
|
|
inferMap_V2 = { |
|
"2.0.2-fix": V200.infer, |
|
"2.0.1": V200.infer, |
|
"2.0": V200.infer, |
|
"1.1.1-fix": V111.infer_fix, |
|
"1.1.1": V111.infer, |
|
"1.1": V110.infer, |
|
"1.1.0": V110.infer, |
|
} |
|
|
|
|
|
inferMap_V1 = { |
|
"1.0.1": V101.infer, |
|
"1.0": V101.infer, |
|
"1.0.0": V101.infer, |
|
} |
|
version = hps.version if hasattr(hps, "version") else latest_version |
|
|
|
if version != latest_version: |
|
if version in inferMap_V3.keys(): |
|
return inferMap_V3[version]( |
|
text, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid, |
|
language, |
|
hps, |
|
net_g, |
|
device, |
|
reference_audio, |
|
emotion, |
|
skip_start, |
|
skip_end, |
|
) |
|
if version in inferMap_V2.keys(): |
|
return inferMap_V2[version]( |
|
text, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid, |
|
language, |
|
hps, |
|
net_g, |
|
device, |
|
) |
|
if version in inferMap_V1.keys(): |
|
return inferMap_V1[version]( |
|
text, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid, |
|
hps, |
|
net_g, |
|
device, |
|
) |
|
|
|
|
|
if isinstance(reference_audio, np.ndarray): |
|
emo = clap.get_clap_audio_feature(reference_audio, device) |
|
else: |
|
emo = clap.get_clap_text_feature(emotion, device) |
|
emo = torch.squeeze(emo, dim=1) |
|
|
|
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( |
|
text, language, bert, hps, device |
|
) |
|
if skip_start: |
|
phones = phones[3:] |
|
tones = tones[3:] |
|
lang_ids = lang_ids[3:] |
|
bert = bert[:, 3:] |
|
ja_bert = ja_bert[:, 3:] |
|
en_bert = en_bert[:, 3:] |
|
if skip_end: |
|
phones = phones[:-2] |
|
tones = tones[:-2] |
|
lang_ids = lang_ids[:-2] |
|
bert = bert[:, :-2] |
|
ja_bert = ja_bert[:, :-2] |
|
en_bert = en_bert[:, :-2] |
|
with torch.no_grad(): |
|
x_tst = phones.to(device).unsqueeze(0) |
|
tones = tones.to(device).unsqueeze(0) |
|
lang_ids = lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
ja_bert = ja_bert.to(device).unsqueeze(0) |
|
en_bert = en_bert.to(device).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
emo = emo.to(device).unsqueeze(0) |
|
del phones |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) |
|
audio = ( |
|
net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
speakers, |
|
tones, |
|
lang_ids, |
|
bert, |
|
ja_bert, |
|
en_bert, |
|
emo, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
length_scale=length_scale, |
|
)[0][0, 0] |
|
.data.cpu() |
|
.float() |
|
.numpy() |
|
) |
|
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return audio |
|
|
|
|
|
def infer_multilang( |
|
text, |
|
sdp_ratio, |
|
noise_scale, |
|
noise_scale_w, |
|
length_scale, |
|
sid, |
|
language, |
|
hps, |
|
net_g, |
|
device, |
|
bert=None, |
|
clap=None, |
|
reference_audio=None, |
|
emotion=None, |
|
skip_start=False, |
|
skip_end=False, |
|
): |
|
bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], [] |
|
|
|
if isinstance(reference_audio, np.ndarray): |
|
emo = clap.get_clap_audio_feature(reference_audio, device) |
|
else: |
|
emo = clap.get_clap_text_feature(emotion, device) |
|
emo = torch.squeeze(emo, dim=1) |
|
for idx, (txt, lang) in enumerate(zip(text, language)): |
|
skip_start = (idx != 0) or (skip_start and idx == 0) |
|
skip_end = (idx != len(text) - 1) or (skip_end and idx == len(text) - 1) |
|
( |
|
temp_bert, |
|
temp_ja_bert, |
|
temp_en_bert, |
|
temp_phones, |
|
temp_tones, |
|
temp_lang_ids, |
|
) = get_text(txt, lang, bert, hps, device) |
|
if skip_start: |
|
temp_bert = temp_bert[:, 3:] |
|
temp_ja_bert = temp_ja_bert[:, 3:] |
|
temp_en_bert = temp_en_bert[:, 3:] |
|
temp_phones = temp_phones[3:] |
|
temp_tones = temp_tones[3:] |
|
temp_lang_ids = temp_lang_ids[3:] |
|
if skip_end: |
|
temp_bert = temp_bert[:, :-2] |
|
temp_ja_bert = temp_ja_bert[:, :-2] |
|
temp_en_bert = temp_en_bert[:, :-2] |
|
temp_phones = temp_phones[:-2] |
|
temp_tones = temp_tones[:-2] |
|
temp_lang_ids = temp_lang_ids[:-2] |
|
bert.append(temp_bert) |
|
ja_bert.append(temp_ja_bert) |
|
en_bert.append(temp_en_bert) |
|
phones.append(temp_phones) |
|
tones.append(temp_tones) |
|
lang_ids.append(temp_lang_ids) |
|
bert = torch.concatenate(bert, dim=1) |
|
ja_bert = torch.concatenate(ja_bert, dim=1) |
|
en_bert = torch.concatenate(en_bert, dim=1) |
|
phones = torch.concatenate(phones, dim=0) |
|
tones = torch.concatenate(tones, dim=0) |
|
lang_ids = torch.concatenate(lang_ids, dim=0) |
|
with torch.no_grad(): |
|
x_tst = phones.to(device).unsqueeze(0) |
|
tones = tones.to(device).unsqueeze(0) |
|
lang_ids = lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
ja_bert = ja_bert.to(device).unsqueeze(0) |
|
en_bert = en_bert.to(device).unsqueeze(0) |
|
emo = emo.to(device).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
del phones |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) |
|
audio = ( |
|
net_g.infer( |
|
x_tst, |
|
x_tst_lengths, |
|
speakers, |
|
tones, |
|
lang_ids, |
|
bert, |
|
ja_bert, |
|
en_bert, |
|
emo, |
|
sdp_ratio=sdp_ratio, |
|
noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, |
|
length_scale=length_scale, |
|
)[0][0, 0] |
|
.data.cpu() |
|
.float() |
|
.numpy() |
|
) |
|
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
return audio |
|
|