|
import logging |
|
|
|
import regex as re |
|
|
|
from tools.classify_language import classify_language, split_alpha_nonalpha |
|
|
|
|
|
def check_is_none(item) -> bool: |
|
"""none -> True, not none -> False""" |
|
return ( |
|
item is None |
|
or (isinstance(item, str) and str(item).isspace()) |
|
or str(item) == "" |
|
) |
|
|
|
|
|
def markup_language(text: str, target_languages: list = None) -> str: |
|
pattern = ( |
|
r"[\!\"\#\$\%\&\'\(\)\*\+\,\-\.\/\:\;\<\>\=\?\@\[\]\{\}\\\\\^\_\`" |
|
r"\!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」" |
|
r"『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘\'\‛\“\”\„\‟…‧﹏.]+" |
|
) |
|
sentences = re.split(pattern, text) |
|
|
|
pre_lang = "" |
|
p = 0 |
|
|
|
if target_languages is not None: |
|
sorted_target_languages = sorted(target_languages) |
|
if sorted_target_languages in [["en", "zh"], ["en", "ja"], ["en", "ja", "zh"]]: |
|
new_sentences = [] |
|
for sentence in sentences: |
|
new_sentences.extend(split_alpha_nonalpha(sentence)) |
|
sentences = new_sentences |
|
|
|
for sentence in sentences: |
|
if check_is_none(sentence): |
|
continue |
|
|
|
lang = classify_language(sentence, target_languages) |
|
|
|
if pre_lang == "": |
|
text = text[:p] + text[p:].replace( |
|
sentence, f"[{lang.upper()}]{sentence}", 1 |
|
) |
|
p += len(f"[{lang.upper()}]") |
|
elif pre_lang != lang: |
|
text = text[:p] + text[p:].replace( |
|
sentence, f"[{pre_lang.upper()}][{lang.upper()}]{sentence}", 1 |
|
) |
|
p += len(f"[{pre_lang.upper()}][{lang.upper()}]") |
|
pre_lang = lang |
|
p += text[p:].index(sentence) + len(sentence) |
|
text += f"[{pre_lang.upper()}]" |
|
|
|
return text |
|
|
|
|
|
def split_by_language(text: str, target_languages: list = None) -> list: |
|
pattern = ( |
|
r"[\!\"\#\$\%\&\'\(\)\*\+\,\-\.\/\:\;\<\>\=\?\@\[\]\{\}\\\\\^\_\`" |
|
r"\!?\。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」" |
|
r"『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘\'\‛\“\”\„\‟…‧﹏.]+" |
|
) |
|
sentences = re.split(pattern, text) |
|
|
|
pre_lang = "" |
|
start = 0 |
|
end = 0 |
|
sentences_list = [] |
|
|
|
if target_languages is not None: |
|
sorted_target_languages = sorted(target_languages) |
|
if sorted_target_languages in [["en", "zh"], ["en", "ja"], ["en", "ja", "zh"]]: |
|
new_sentences = [] |
|
for sentence in sentences: |
|
new_sentences.extend(split_alpha_nonalpha(sentence)) |
|
sentences = new_sentences |
|
|
|
for sentence in sentences: |
|
if check_is_none(sentence): |
|
continue |
|
|
|
lang = classify_language(sentence, target_languages) |
|
|
|
end += text[end:].index(sentence) |
|
if pre_lang != "" and pre_lang != lang: |
|
sentences_list.append((text[start:end], pre_lang)) |
|
start = end |
|
end += len(sentence) |
|
pre_lang = lang |
|
sentences_list.append((text[start:], pre_lang)) |
|
|
|
return sentences_list |
|
|
|
|
|
def sentence_split(text: str, max: int) -> list: |
|
pattern = r"[!(),—+\-.:;??。,、;:]+" |
|
sentences = re.split(pattern, text) |
|
discarded_chars = re.findall(pattern, text) |
|
|
|
sentences_list, count, p = [], 0, 0 |
|
|
|
|
|
for i, discarded_chars in enumerate(discarded_chars): |
|
count += len(sentences[i]) + len(discarded_chars) |
|
if count >= max: |
|
sentences_list.append(text[p : p + count].strip()) |
|
p += count |
|
count = 0 |
|
|
|
|
|
if p < len(text): |
|
sentences_list.append(text[p:]) |
|
|
|
return sentences_list |
|
|
|
|
|
def sentence_split_and_markup(text, max=50, lang="auto", speaker_lang=None): |
|
|
|
if speaker_lang is not None and len(speaker_lang) == 1: |
|
if lang.upper() not in ["AUTO", "MIX"] and lang.lower() != speaker_lang[0]: |
|
logging.debug( |
|
f'lang "{lang}" is not in speaker_lang {speaker_lang},automatically set lang={speaker_lang[0]}' |
|
) |
|
lang = speaker_lang[0] |
|
|
|
sentences_list = [] |
|
if lang.upper() != "MIX": |
|
if max <= 0: |
|
sentences_list.append( |
|
markup_language(text, speaker_lang) |
|
if lang.upper() == "AUTO" |
|
else f"[{lang.upper()}]{text}[{lang.upper()}]" |
|
) |
|
else: |
|
for i in sentence_split(text, max): |
|
if check_is_none(i): |
|
continue |
|
sentences_list.append( |
|
markup_language(i, speaker_lang) |
|
if lang.upper() == "AUTO" |
|
else f"[{lang.upper()}]{i}[{lang.upper()}]" |
|
) |
|
else: |
|
sentences_list.append(text) |
|
|
|
for i in sentences_list: |
|
logging.debug(i) |
|
|
|
return sentences_list |
|
|
|
|
|
if __name__ == "__main__": |
|
text = "这几天心里颇不宁静。今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了;妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。我悄悄地披了大衫,带上门出去。" |
|
print(markup_language(text, target_languages=None)) |
|
print(sentence_split(text, max=50)) |
|
print(sentence_split_and_markup(text, max=50, lang="auto", speaker_lang=None)) |
|
|
|
text = "你好,这是一段用来测试自动标注的文本。こんにちは,これは自動ラベリングのテスト用テキストです.Hello, this is a piece of text to test autotagging.你好!今天我们要介绍VITS项目,其重点是使用了GAN Duration predictor和transformer flow,并且接入了Bert模型来提升韵律。Bert embedding会在稍后介绍。" |
|
print(split_by_language(text, ["zh", "ja", "en"])) |
|
|
|
text = "vits和Bert-VITS2是tts模型。花费3days.花费3天。Take 3 days" |
|
|
|
print(split_by_language(text, ["zh", "ja", "en"])) |
|
|
|
|
|
print(split_by_language(text, ["zh", "en"])) |
|
|
|
|
|
text = "vits 和 Bert-VITS2 是 tts 模型。花费 3 days. 花费 3天。Take 3 days" |
|
print(split_by_language(text, ["zh", "en"])) |
|
|
|
|