Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,30 +3,24 @@ import gradio as gr
|
|
| 3 |
import numpy as np
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
-
from diffusers import
|
| 7 |
-
|
| 8 |
-
# 添加导入语句
|
| 9 |
-
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl
|
| 10 |
|
| 11 |
if not torch.cuda.is_available():
|
| 12 |
-
DESCRIPTION += "\n<p>你现在运行在CPU
|
| 13 |
|
| 14 |
MAX_SEED = np.iinfo(np.int32).max
|
| 15 |
MAX_IMAGE_SIZE = 4096
|
| 16 |
|
| 17 |
if torch.cuda.is_available():
|
| 18 |
-
vae = AutoencoderKL.from_pretrained(
|
| 19 |
-
|
| 20 |
-
)
|
| 21 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 22 |
"John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl",
|
| 23 |
vae=vae,
|
| 24 |
torch_dtype=torch.float16,
|
| 25 |
use_safetensors=True,
|
| 26 |
-
add_watermarker=False
|
| 27 |
)
|
| 28 |
-
#
|
| 29 |
-
# pipe.tokenizer.model_max_length = 512
|
| 30 |
pipe.to("cuda")
|
| 31 |
|
| 32 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
@@ -38,7 +32,7 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 38 |
def infer(
|
| 39 |
prompt: str,
|
| 40 |
negative_prompt: str = "",
|
| 41 |
-
use_negative_prompt: bool =
|
| 42 |
seed: int = 1,
|
| 43 |
width: int = 512,
|
| 44 |
height: int = 768,
|
|
@@ -50,40 +44,15 @@ def infer(
|
|
| 50 |
):
|
| 51 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 52 |
generator = torch.Generator().manual_seed(seed)
|
| 53 |
-
|
| 54 |
-
# 使用 get_weighted_text_embeddings_sdxl 获取文本嵌入,不传递 device 参数
|
| 55 |
-
if use_negative_prompt and negative_prompt:
|
| 56 |
-
(
|
| 57 |
-
prompt_embeds,
|
| 58 |
-
prompt_neg_embeds,
|
| 59 |
-
pooled_prompt_embeds,
|
| 60 |
-
negative_pooled_prompt_embeds,
|
| 61 |
-
) = get_weighted_text_embeddings_sdxl(
|
| 62 |
-
pipe,
|
| 63 |
-
prompt=prompt,
|
| 64 |
-
neg_prompt=negative_prompt,
|
| 65 |
-
)
|
| 66 |
-
else:
|
| 67 |
-
(
|
| 68 |
-
prompt_embeds,
|
| 69 |
-
_,
|
| 70 |
-
pooled_prompt_embeds,
|
| 71 |
-
_,
|
| 72 |
-
) = get_weighted_text_embeddings_sdxl(
|
| 73 |
-
pipe,
|
| 74 |
-
prompt=prompt,
|
| 75 |
-
)
|
| 76 |
-
prompt_neg_embeds = None
|
| 77 |
-
negative_pooled_prompt_embeds = None
|
| 78 |
-
|
| 79 |
image = pipe(
|
| 80 |
-
|
| 81 |
-
|
| 82 |
width=width,
|
| 83 |
height=height,
|
| 84 |
guidance_scale=guidance_scale,
|
| 85 |
num_inference_steps=num_inference_steps,
|
| 86 |
generator=generator,
|
|
|
|
| 87 |
).images[0]
|
| 88 |
return image, seed
|
| 89 |
|
|
@@ -93,13 +62,13 @@ examples = [
|
|
| 93 |
]
|
| 94 |
|
| 95 |
css = '''
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
'''
|
| 102 |
-
|
| 103 |
with gr.Blocks(css=css) as demo:
|
| 104 |
gr.Markdown("""# 梦羽的模型生成器
|
| 105 |
### 快速生成NoobXL的模型图片.""")
|
|
@@ -171,7 +140,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 171 |
)
|
| 172 |
|
| 173 |
gr.on(
|
| 174 |
-
triggers=[prompt.submit,
|
| 175 |
fn=infer,
|
| 176 |
inputs=[
|
| 177 |
prompt,
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
+
from diffusers import AutoPipelineForText2Image, AutoencoderKL #,EulerDiscreteScheduler
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
if not torch.cuda.is_available():
|
| 9 |
+
DESCRIPTION += "\n<p>你现在运行在CPU上 但是只支持GPU.</p>"
|
| 10 |
|
| 11 |
MAX_SEED = np.iinfo(np.int32).max
|
| 12 |
MAX_IMAGE_SIZE = 4096
|
| 13 |
|
| 14 |
if torch.cuda.is_available():
|
| 15 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 16 |
+
pipe = AutoPipelineForText2Image.from_pretrained(
|
|
|
|
|
|
|
| 17 |
"John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl",
|
| 18 |
vae=vae,
|
| 19 |
torch_dtype=torch.float16,
|
| 20 |
use_safetensors=True,
|
| 21 |
+
add_watermarker=False
|
| 22 |
)
|
| 23 |
+
#pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
|
|
|
| 24 |
pipe.to("cuda")
|
| 25 |
|
| 26 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
|
|
| 32 |
def infer(
|
| 33 |
prompt: str,
|
| 34 |
negative_prompt: str = "",
|
| 35 |
+
use_negative_prompt: bool = False,
|
| 36 |
seed: int = 1,
|
| 37 |
width: int = 512,
|
| 38 |
height: int = 768,
|
|
|
|
| 44 |
):
|
| 45 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 46 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
image = pipe(
|
| 48 |
+
prompt=prompt,
|
| 49 |
+
negative_prompt=negative_prompt,
|
| 50 |
width=width,
|
| 51 |
height=height,
|
| 52 |
guidance_scale=guidance_scale,
|
| 53 |
num_inference_steps=num_inference_steps,
|
| 54 |
generator=generator,
|
| 55 |
+
use_resolution_binning=use_resolution_binning,
|
| 56 |
).images[0]
|
| 57 |
return image, seed
|
| 58 |
|
|
|
|
| 62 |
]
|
| 63 |
|
| 64 |
css = '''
|
| 65 |
+
.gradio-container{max-width: 560px !important}
|
| 66 |
+
h1{text-align:center}
|
| 67 |
+
footer {
|
| 68 |
+
visibility: hidden
|
| 69 |
+
}
|
| 70 |
'''
|
| 71 |
+
|
| 72 |
with gr.Blocks(css=css) as demo:
|
| 73 |
gr.Markdown("""# 梦羽的模型生成器
|
| 74 |
### 快速生成NoobXL的模型图片.""")
|
|
|
|
| 140 |
)
|
| 141 |
|
| 142 |
gr.on(
|
| 143 |
+
triggers=[prompt.submit,run_button.click],
|
| 144 |
fn=infer,
|
| 145 |
inputs=[
|
| 146 |
prompt,
|