Spaces:
Sleeping
Sleeping
import logging | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
import IPython.display as ipd | |
import torch | |
import commons | |
import utils | |
import ONNXVITS_infer | |
from text import text_to_sequence | |
def get_text(text, hps): | |
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
hps = utils.get_hparams_from_file("../vits/pretrained_models/uma87.json") | |
net_g = ONNXVITS_infer.SynthesizerTrn( | |
len(hps.symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint("../vits/pretrained_models/uma_1153000.pth", net_g) | |
text1 = get_text("おはようございます。", hps) | |
stn_tst = text1 | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) | |
sid = torch.LongTensor([0]) | |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy() | |
print(audio) |