Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import cupy as cp
|
| 7 |
+
|
| 8 |
+
# CUDA kernel for custom filter (example sharpening)
|
| 9 |
+
custom_filter_kernel = cp.array([[0, -1, 0],
|
| 10 |
+
[-1, 5, -1],
|
| 11 |
+
[0, -1, 0]], dtype=cp.float32)
|
| 12 |
+
|
| 13 |
+
def edge_detection_cuda(image):
|
| 14 |
+
img_gpu = cp.asarray(image, dtype=cp.uint8)
|
| 15 |
+
gray_gpu = cp.asarray(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY))
|
| 16 |
+
edges_gpu = cv2.Canny(cp.asnumpy(gray_gpu), 100, 200)
|
| 17 |
+
return cv2.cvtColor(edges_gpu, cv2.COLOR_GRAY2RGB)
|
| 18 |
+
|
| 19 |
+
def gaussian_blur_cuda(image):
|
| 20 |
+
img_gpu = cp.asarray(image, dtype=cp.float32)
|
| 21 |
+
blurred_gpu = cv2.GaussianBlur(cp.asnumpy(img_gpu), (15, 15), 0)
|
| 22 |
+
return blurred_gpu.astype(np.uint8)
|
| 23 |
+
|
| 24 |
+
def custom_filter_cuda(image):
|
| 25 |
+
img_gpu = cp.asarray(image, dtype=cp.float32)
|
| 26 |
+
img_gpu = cv2.filter2D(cp.asnumpy(img_gpu), -1, cp.asnumpy(custom_filter_kernel))
|
| 27 |
+
return img_gpu.astype(np.uint8)
|
| 28 |
+
|
| 29 |
+
def process_image(image, operation):
|
| 30 |
+
if image is None:
|
| 31 |
+
return None, None, None
|
| 32 |
+
|
| 33 |
+
edge_result = None
|
| 34 |
+
blur_result = None
|
| 35 |
+
custom_result = None
|
| 36 |
+
|
| 37 |
+
if operation == "All":
|
| 38 |
+
# Run operations in parallel using CUDA Streams
|
| 39 |
+
stream1 = cp.cuda.Stream()
|
| 40 |
+
stream2 = cp.cuda.Stream()
|
| 41 |
+
stream3 = cp.cuda.Stream()
|
| 42 |
+
|
| 43 |
+
with stream1:
|
| 44 |
+
edge_result = edge_detection_cuda(image)
|
| 45 |
+
with stream2:
|
| 46 |
+
blur_result = gaussian_blur_cuda(image)
|
| 47 |
+
with stream3:
|
| 48 |
+
custom_result = custom_filter_cuda(image)
|
| 49 |
+
|
| 50 |
+
stream1.synchronize()
|
| 51 |
+
stream2.synchronize()
|
| 52 |
+
stream3.synchronize()
|
| 53 |
+
|
| 54 |
+
elif operation == "Edge Detection":
|
| 55 |
+
edge_result = edge_detection_cuda(image)
|
| 56 |
+
elif operation == "Gaussian Blur":
|
| 57 |
+
blur_result = gaussian_blur_cuda(image)
|
| 58 |
+
elif operation == "Custom Filter":
|
| 59 |
+
custom_result = custom_filter_cuda(image)
|
| 60 |
+
|
| 61 |
+
return edge_result, blur_result, custom_result
|
| 62 |
+
|
| 63 |
+
with gr.Blocks() as demo:
|
| 64 |
+
gr.Markdown("## 🖼️ Parallel Image Processing with CUDA (GPU)")
|
| 65 |
+
|
| 66 |
+
with gr.Row():
|
| 67 |
+
with gr.Column():
|
| 68 |
+
image_input = gr.Image(type="numpy", label="Upload Image")
|
| 69 |
+
process_btn = gr.Button("Process Image", variant="primary")
|
| 70 |
+
with gr.Column():
|
| 71 |
+
operation = gr.Radio(["All", "Edge Detection", "Gaussian Blur", "Custom Filter"],
|
| 72 |
+
label="Choose Operation", value="All")
|
| 73 |
+
|
| 74 |
+
with gr.Row():
|
| 75 |
+
edge_output = gr.Image(label="Edge Detection Result")
|
| 76 |
+
blur_output = gr.Image(label="Gaussian Blur Result")
|
| 77 |
+
custom_output = gr.Image(label="Custom Filter Result")
|
| 78 |
+
|
| 79 |
+
process_btn.click(process_image, inputs=[image_input, operation],
|
| 80 |
+
outputs=[edge_output, blur_output, custom_output])
|
| 81 |
+
|
| 82 |
+
# Launch app
|
| 83 |
+
demo.launch()
|