Spaces:
Runtime error
Runtime error
Megatron17
commited on
Commit
•
903f9d3
1
Parent(s):
82e800c
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from model import Lightning_YOLO
|
3 |
+
import config
|
4 |
+
from utils import non_max_suppression, cells_to_bboxes, draw_bounding_boxes
|
5 |
+
import torch
|
6 |
+
|
7 |
+
scaled_anchors = config.scaled_anchors
|
8 |
+
|
9 |
+
model = Lightning_YOLO()
|
10 |
+
model.load_state_dict(torch.load("yolov3.pth", map_location="cpu"), strict=False)
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
def inference(image, threst = 0.5, iou_tresh = 0.5):
|
14 |
+
transformed_image = config.transforms(image=image)["image"].unsqueeze(0)
|
15 |
+
output = model(transformed_image)
|
16 |
+
bboxes = [[] for _ in range(1)]
|
17 |
+
for i in range(3):
|
18 |
+
batch_size, A, S, _, _ = output[i].shape
|
19 |
+
anchor = scaled_anchors[i]
|
20 |
+
boxes_scale_i = cells_to_bboxes(
|
21 |
+
output[i], anchor, S=S, is_preds=True
|
22 |
+
)
|
23 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
24 |
+
bboxes[idx] += box
|
25 |
+
|
26 |
+
nms_boxes = non_max_suppression(
|
27 |
+
bboxes[0], iou_threshold=iou_tresh, threshold=threst, box_format="midpoint",
|
28 |
+
)
|
29 |
+
plot_img = draw_bounding_boxes(image.copy(), nms_boxes, class_labels=config.PASCAL_CLASSES)
|
30 |
+
|
31 |
+
return plot_img
|
32 |
+
|
33 |
+
def visualize_gradcam(image, target_layer=-5, show_cam=True, transparency=0.5):
|
34 |
+
# if show_cam:
|
35 |
+
# cam = YoloCAM(model=model, target_layers=[model.layers[target_layer]], use_cuda=False)
|
36 |
+
# transformed_image = config.transforms(image=image)["image"].unsqueeze(0)
|
37 |
+
# grayscale_cam = cam(transformed_image, scaled_anchors)[0, :, :]
|
38 |
+
# img = cv2.resize(image, (416, 416))
|
39 |
+
# img = np.float32(img) / 255
|
40 |
+
# cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency)
|
41 |
+
# else:
|
42 |
+
# cam_image = image
|
43 |
+
|
44 |
+
# return cam_image
|
45 |
+
pass
|
46 |
+
|
47 |
+
window1 = gr.Interface(
|
48 |
+
inference,
|
49 |
+
inputs=[
|
50 |
+
gr.Image(label="Input Image"),
|
51 |
+
gr.Slider(0, 1, value=0.5, step=0.1, label="Threshold", info="Set Threshold value"),
|
52 |
+
gr.Slider(0, 1, value=0.5, step=0.1, label="IOU Threshold", info="Set IOU Threshold value"),
|
53 |
+
],
|
54 |
+
outputs=[
|
55 |
+
gr.Image(label="YoloV3 Object Detection"),
|
56 |
+
],
|
57 |
+
# examples=ex1,
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
window2 = gr.Interface(
|
62 |
+
visualize_gradcam,
|
63 |
+
inputs=[
|
64 |
+
gr.Image(label="Input Image"),
|
65 |
+
gr.Slider(-5, -2, value=-3, step=-1, label="Network Layer", info="GRAD-CAM Layer to visualize?"),
|
66 |
+
gr.Checkbox(label="GradCAM", value=True, info="Visualize Class Activation Maps ??"),
|
67 |
+
gr.Slider(0, 1, value=0.5, step=0.1, label="Transparency", info="Set Transparency of GRAD-CAMs"),
|
68 |
+
],
|
69 |
+
outputs=[
|
70 |
+
gr.Image(label="Grad-CAM Visualization"),
|
71 |
+
],
|
72 |
+
# examples=ex2,
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
app = gr.TabbedInterface([window1, window2], ["YOLO V3 Detection", "GradCAM Visualization"])
|
77 |
+
app.launch()
|