Spaces:
Runtime error
Runtime error
๐
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
app.py
CHANGED
@@ -72,7 +72,7 @@ def proc_submission(
|
|
72 |
# create elaborate HTML warning
|
73 |
input_wc = re.split(r"\s+", input_text)
|
74 |
msg = f"""
|
75 |
-
<div style="background-color: #
|
76 |
<h3>Warning</h3>
|
77 |
<p>Input text was truncated to {max_input_length} words. This is about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
|
78 |
</div>
|
@@ -104,7 +104,7 @@ def proc_submission(
|
|
104 |
html = ""
|
105 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
106 |
if msg is not None:
|
107 |
-
html +=
|
108 |
|
109 |
html += ""
|
110 |
|
@@ -225,36 +225,7 @@ if __name__ == "__main__":
|
|
225 |
label="Beam Search: # of Beams",
|
226 |
value=2,
|
227 |
)
|
228 |
-
gr.Markdown(
|
229 |
-
"_The base model is less performant than the large model, but is faster and will accept up to 2048 words per input (Large model accepts up to 768)._"
|
230 |
-
)
|
231 |
-
with gr.Row():
|
232 |
-
length_penalty = gr.inputs.Slider(
|
233 |
-
minimum=0.5,
|
234 |
-
maximum=1.0,
|
235 |
-
label="length penalty",
|
236 |
-
default=0.7,
|
237 |
-
step=0.05,
|
238 |
-
)
|
239 |
-
token_batch_length = gr.Radio(
|
240 |
-
choices=[512, 768, 1024, 1536],
|
241 |
-
label="token batch length",
|
242 |
-
value=1024,
|
243 |
-
)
|
244 |
|
245 |
-
with gr.Row():
|
246 |
-
repetition_penalty = gr.inputs.Slider(
|
247 |
-
minimum=1.0,
|
248 |
-
maximum=5.0,
|
249 |
-
label="repetition penalty",
|
250 |
-
default=3.5,
|
251 |
-
step=0.1,
|
252 |
-
)
|
253 |
-
no_repeat_ngram_size = gr.Radio(
|
254 |
-
choices=[2, 3, 4],
|
255 |
-
label="no repeat ngram size",
|
256 |
-
value=3,
|
257 |
-
)
|
258 |
with gr.Row():
|
259 |
example_name = gr.Dropdown(
|
260 |
list(name_to_path.keys()),
|
@@ -268,10 +239,10 @@ if __name__ == "__main__":
|
|
268 |
label="Input Text (for summarization)",
|
269 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
270 |
)
|
271 |
-
gr.Markdown("Upload
|
272 |
with gr.Row():
|
273 |
uploaded_file = gr.File(
|
274 |
-
label="Upload
|
275 |
file_count="single",
|
276 |
type="file",
|
277 |
)
|
@@ -302,9 +273,37 @@ if __name__ == "__main__":
|
|
302 |
)
|
303 |
|
304 |
gr.Markdown("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
with gr.Column():
|
307 |
-
gr.Markdown("
|
308 |
gr.Markdown(
|
309 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
310 |
)
|
|
|
72 |
# create elaborate HTML warning
|
73 |
input_wc = re.split(r"\s+", input_text)
|
74 |
msg = f"""
|
75 |
+
<div style="background-color: #FFA500; color: white; padding: 20px;">
|
76 |
<h3>Warning</h3>
|
77 |
<p>Input text was truncated to {max_input_length} words. This is about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
|
78 |
</div>
|
|
|
104 |
html = ""
|
105 |
html += f"<p>Runtime: {rt} minutes on CPU</p>"
|
106 |
if msg is not None:
|
107 |
+
html += msg
|
108 |
|
109 |
html += ""
|
110 |
|
|
|
225 |
label="Beam Search: # of Beams",
|
226 |
value=2,
|
227 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
with gr.Row():
|
230 |
example_name = gr.Dropdown(
|
231 |
list(name_to_path.keys()),
|
|
|
239 |
label="Input Text (for summarization)",
|
240 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
241 |
)
|
242 |
+
gr.Markdown("Upload a file (`.txt` or `.pdf`)")
|
243 |
with gr.Row():
|
244 |
uploaded_file = gr.File(
|
245 |
+
label="Upload file",
|
246 |
file_count="single",
|
247 |
type="file",
|
248 |
)
|
|
|
273 |
)
|
274 |
|
275 |
gr.Markdown("---")
|
276 |
+
with gr.Column():
|
277 |
+
gr.Markdown("### Advanced Settings")
|
278 |
+
with gr.Row():
|
279 |
+
length_penalty = gr.inputs.Slider(
|
280 |
+
minimum=0.5,
|
281 |
+
maximum=1.0,
|
282 |
+
label="length penalty",
|
283 |
+
default=0.7,
|
284 |
+
step=0.05,
|
285 |
+
)
|
286 |
+
token_batch_length = gr.Radio(
|
287 |
+
choices=[512, 768, 1024, 1536],
|
288 |
+
label="token batch length",
|
289 |
+
value=1024,
|
290 |
+
)
|
291 |
|
292 |
+
with gr.Row():
|
293 |
+
repetition_penalty = gr.inputs.Slider(
|
294 |
+
minimum=1.0,
|
295 |
+
maximum=5.0,
|
296 |
+
label="repetition penalty",
|
297 |
+
default=3.5,
|
298 |
+
step=0.1,
|
299 |
+
)
|
300 |
+
no_repeat_ngram_size = gr.Radio(
|
301 |
+
choices=[2, 3, 4],
|
302 |
+
label="no repeat ngram size",
|
303 |
+
value=3,
|
304 |
+
)
|
305 |
with gr.Column():
|
306 |
+
gr.Markdown("### About the Model")
|
307 |
gr.Markdown(
|
308 |
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
|
309 |
)
|