Spaces:
Runtime error
Runtime error
""" | |
app.py - the main module for the gradio app for summarization | |
Usage: | |
app.py [-h] [--share] [-m MODEL] [-nb ADD_BEAM_OPTION] [-batch TOKEN_BATCH_OPTION] | |
[-level {DEBUG,INFO,WARNING,ERROR}] | |
Details: | |
python app.py --help | |
Environment Variables: | |
USE_TORCH (str): whether to use torch (1) or not (0) | |
TOKENIZERS_PARALLELISM (str): whether to use parallelism (true) or not (false) | |
Optional Environment Variables: | |
APP_MAX_WORDS (int): the maximum number of words to use for summarization | |
APP_OCR_MAX_PAGES (int): the maximum number of pages to use for OCR | |
""" | |
import argparse | |
import contextlib | |
import gc | |
import logging | |
import os | |
import pprint as pp | |
import random | |
import re | |
import sys | |
import time | |
from pathlib import Path | |
os.environ["USE_TORCH"] = "1" | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s", | |
datefmt="%Y-%b-%d %H:%M:%S", | |
) | |
import gradio as gr | |
import nltk | |
import torch | |
from cleantext import clean | |
from doctr.models import ocr_predictor | |
from aggregate import BatchAggregator | |
from pdf2text import convert_PDF_to_Text | |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches | |
from utils import ( | |
contraction_aware_tokenize, | |
extract_batches, | |
load_example_filenames, | |
remove_stagnant_files, | |
remove_stopwords, | |
saves_summary, | |
textlist2html, | |
truncate_word_count, | |
) | |
_here = Path(__file__).parent | |
nltk.download("punkt", force=True, quiet=True) | |
nltk.download("popular", force=True, quiet=True) | |
# Constants & Globals | |
# MODEL_OPTIONS = [ | |
# "pszemraj/long-t5-tglobal-base-16384-book-summary", | |
# "pszemraj/long-t5-tglobal-base-sci-simplify", | |
# "pszemraj/long-t5-tglobal-base-sci-simplify-elife", | |
# "pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1", | |
# "pszemraj/pegasus-x-large-book-summary", | |
# ] # models users can choose from | |
MODEL_OPTIONS = { | |
"Text Summarizer": "pszemraj/long-t5-tglobal-base-16384-book-summary", | |
"News Article Summarizer Alpha": "pszemraj/long-t5-tglobal-base-sci-simplify", | |
"News Article Summarizer Beta": "pszemraj/long-t5-tglobal-base-sci-simplify-elife", | |
"Scientific Document Summarizer Alpha": "pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1", | |
"Scientific Document Summarizer Beta": "pszemraj/pegasus-x-large-book-summary", | |
} | |
MODAL_NAMES = list(MODEL_OPTIONS.keys()) # User-friendly labels | |
MODAL_VALUES = list(MODEL_OPTIONS.values()) # Longer model names | |
BEAM_OPTIONS = [2, 3, 4] # beam sizes users can choose from | |
TOKEN_BATCH_OPTIONS = [ | |
1024, | |
1536, | |
2048, | |
2560, | |
3072, | |
] # token batch sizes users can choose from | |
SUMMARY_PLACEHOLDER = "<p><em>Output will appear below:</em></p>" | |
AGGREGATE_MODEL = "MBZUAI/LaMini-Flan-T5-783M" # model to use for aggregation | |
# if duplicating space: uncomment this line to adjust the max words | |
os.environ["APP_MAX_WORDS"] = str(8182) # set the max words to 2048 | |
os.environ["APP_OCR_MAX_PAGES"] = str(50) # set the max pages to 40 | |
os.environ["APP_AGG_FORCE_CPU"] = str(1) # force cpu for aggregation | |
aggregator = BatchAggregator( | |
AGGREGATE_MODEL, force_cpu=os.environ.get("APP_AGG_FORCE_CPU", False) | |
) | |
def aggregate_text( | |
summary_text: str, | |
text_file: gr.inputs.File = None, | |
) -> str: | |
""" | |
Aggregate the text from the batches. | |
NOTE: you should probably include the BatchAggregator object as a fn arg if using this code | |
:param batches_html: The batches to aggregate, in html format | |
:param text_file: The text file to append the aggregate summary to | |
:return: The aggregate summary in html format | |
""" | |
if summary_text is None or summary_text == SUMMARY_PLACEHOLDER: | |
logging.error("No text provided. Make sure a summary has been generated first.") | |
return "Error: No text provided. Make sure a summary has been generated first." | |
try: | |
extracted_batches = extract_batches(summary_text) | |
except Exception as e: | |
logging.info(summary_text) | |
logging.info(f"the batches html is: {type(summary_text)}") | |
return f"Error: unable to extract batches - check input: {e}" | |
if not extracted_batches: | |
logging.error("unable to extract batches - check input") | |
return "Error: unable to extract batches - check input" | |
out_path = None | |
if text_file is not None: | |
out_path = text_file.name # assuming name attribute stores the file path | |
content_batches = [batch["content"] for batch in extracted_batches] | |
full_summary = aggregator.infer_aggregate(content_batches) | |
# if a path that exists is provided, append the summary with markdown formatting | |
if out_path: | |
out_path = Path(out_path) | |
try: | |
with open(out_path, "a", encoding="utf-8") as f: | |
f.write("\n\n## Aggregate Summary\n\n") | |
f.write( | |
"- This is an instruction-based LLM aggregation of the previous 'summary batches'.\n" | |
) | |
f.write(f"- Aggregation model: {aggregator.model_name}\n\n") | |
f.write(f"{full_summary}\n\n") | |
logging.info(f"Updated {out_path} with aggregate summary") | |
except Exception as e: | |
logging.error(f"unable to update {out_path} with aggregate summary: {e}") | |
full_summary_html = f""" | |
<div style=" | |
margin-bottom: 20px; | |
font-size: 18px; | |
line-height: 1.5em; | |
color: #333; | |
"> | |
<h2 style="font-size: 22px; color: #555;">Aggregate Summary:</h2> | |
<p style="white-space: pre-line;">{full_summary}</p> | |
</div> | |
""" | |
return full_summary_html | |
def predict( | |
input_text: str, | |
model_name: str, | |
token_batch_length: int = 1024, | |
empty_cache: bool = True, | |
**settings, | |
) -> list: | |
""" | |
predict - helper fn to support multiple models for summarization at once | |
:param str input_text: the input text to summarize | |
:param str model_name: model name to use | |
:param int token_batch_length: the length of the token batches to use | |
:param bool empty_cache: whether to empty the cache before loading a new= model | |
:return: list of dicts with keys "summary" and "score" | |
""" | |
if torch.cuda.is_available() and empty_cache: | |
torch.cuda.empty_cache() | |
model, tokenizer = load_model_and_tokenizer(model_name) | |
summaries = summarize_via_tokenbatches( | |
input_text, | |
model, | |
tokenizer, | |
batch_length=token_batch_length, | |
**settings, | |
) | |
del model | |
del tokenizer | |
gc.collect() | |
return summaries | |
def proc_submission( | |
input_text: str, | |
model_name: str, | |
length_penalty: float, | |
predrop_stopwords: bool = False, | |
repetition_penalty: float = 0.5, | |
no_repeat_ngram_size: int = 3, | |
token_batch_length: int = 1530, | |
num_beams: int = 3, | |
max_input_length: int = 8182, | |
): | |
""" | |
proc_submission - a helper function for the gradio module to process submissions | |
Args: | |
input_text (str): the input text to summarize | |
model_name (str): the hf model tag of the model to use | |
num_beams (int): the number of beams to use | |
token_batch_length (int): the length of the token batches to use | |
length_penalty (float): the length penalty to use | |
repetition_penalty (float): the repetition penalty to use | |
no_repeat_ngram_size (int): the no repeat ngram size to use | |
predrop_stopwords (bool): whether to pre-drop stopwords before truncating/summarizing | |
max_input_length (int, optional): the maximum input length to use. Defaults to 6144. | |
Note: | |
the max_input_length is set to 6144 by default, but can be changed by setting the | |
environment variable APP_MAX_WORDS to a different value. | |
Returns: | |
tuple (4): a tuple containing the following: | |
""" | |
remove_stagnant_files() # clean up old files | |
settings = { | |
"length_penalty": float(length_penalty), | |
"repetition_penalty": float(repetition_penalty), | |
"no_repeat_ngram_size": int(no_repeat_ngram_size), | |
"encoder_no_repeat_ngram_size": 4, | |
"num_beams": int(num_beams), | |
"min_length": 4, | |
"max_length": int(token_batch_length // 4), | |
"early_stopping": True, | |
"do_sample": False, | |
} | |
max_input_length = int(os.environ.get("APP_MAX_WORDS", max_input_length)) | |
logging.info( | |
f"max_input_length set to: {max_input_length}. pre-drop stopwords: {predrop_stopwords}" | |
) | |
st = time.perf_counter() | |
history = {} | |
cln_text = clean(input_text, lower=False) | |
parsed_cln_text = remove_stopwords(cln_text) if predrop_stopwords else cln_text | |
logging.info( | |
f"pre-truncation word count: {len(contraction_aware_tokenize(parsed_cln_text))}" | |
) | |
truncation_validated = truncate_word_count( | |
parsed_cln_text, max_words=max_input_length | |
) | |
if truncation_validated["was_truncated"]: | |
model_input_text = truncation_validated["processed_text"] | |
# create elaborate HTML warning | |
input_wc = len(contraction_aware_tokenize(parsed_cln_text)) | |
msg = f""" | |
<div style="background-color: #FFA500; color: white; padding: 20px;"> | |
<h3>Warning</h3> | |
<p>Input text was truncated to {max_input_length} words. That's about {100*max_input_length/input_wc:.2f}% of the original text.</p> | |
<p>Dropping stopwords is set to {predrop_stopwords}. If this is not what you intended, please validate the advanced settings.</p> | |
</div> | |
""" | |
logging.warning(msg) | |
history["WARNING"] = msg | |
else: | |
model_input_text = truncation_validated["processed_text"] | |
msg = None | |
if len(input_text) < 50: | |
# this is essentially a different case from the above | |
msg = f""" | |
<div style="background-color: #880808; color: white; padding: 20px;"> | |
<br> | |
<img src="https://i.imgflip.com/7kadd9.jpg" alt="no text"> | |
<br> | |
<h3>Error</h3> | |
<p>Input text is too short to summarize. Detected {len(input_text)} characters. | |
Please load text by selecting an example from the dropdown menu or by pasting text into the text box.</p> | |
</div> | |
""" | |
logging.warning(msg) | |
logging.warning("RETURNING EMPTY STRING") | |
history["WARNING"] = msg | |
return msg, "<strong>No summary generated.</strong>", "", [] | |
_summaries = predict( | |
input_text=model_input_text, | |
model_name=model_name, | |
token_batch_length=token_batch_length, | |
**settings, | |
) | |
sum_text = [s["summary"][0].strip() + "\n" for s in _summaries] | |
sum_scores = [ | |
f" - Batch Summary {i}: {round(s['summary_score'],4)}" | |
for i, s in enumerate(_summaries) | |
] | |
full_summary = textlist2html(sum_text) | |
history["Summary Scores"] = "<br><br>" | |
scores_out = "\n".join(sum_scores) | |
rt = round((time.perf_counter() - st) / 60, 2) | |
logging.info(f"Runtime: {rt} minutes") | |
html = "" | |
html += f"<p>Runtime: {rt} minutes with model: {model_name}</p>" | |
if msg is not None: | |
html += msg | |
html += "" | |
settings["remove_stopwords"] = predrop_stopwords | |
settings["model_name"] = model_name | |
saved_file = saves_summary(summarize_output=_summaries, outpath=None, **settings) | |
return html, full_summary,scores_out, saved_file | |
def load_single_example_text( | |
example_path: str or Path, | |
max_pages: int = 20, | |
) -> str: | |
""" | |
load_single_example_text - loads a single example text file | |
:param strorPath example_path: name of the example to load | |
:param int max_pages: the maximum number of pages to load from a PDF | |
:return str: the text of the example | |
""" | |
global name_to_path, ocr_model | |
full_ex_path = name_to_path[example_path] | |
full_ex_path = Path(full_ex_path) | |
if full_ex_path.suffix in [".txt", ".md"]: | |
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f: | |
raw_text = f.read() | |
text = clean(raw_text, lower=False) | |
elif full_ex_path.suffix == ".pdf": | |
logging.info(f"Loading PDF file {full_ex_path}") | |
max_pages = int(os.environ.get("APP_OCR_MAX_PAGES", max_pages)) | |
logging.info(f"max_pages set to: {max_pages}") | |
conversion_stats = convert_PDF_to_Text( | |
full_ex_path, | |
ocr_model=ocr_model, | |
max_pages=max_pages, | |
) | |
text = conversion_stats["converted_text"] | |
else: | |
logging.error(f"Unknown file type {full_ex_path.suffix}") | |
text = "ERROR - check example path" | |
return text | |
# def load_uploaded_file(file_obj, max_pages: int = 20, lower: bool = False) -> str: | |
# """ | |
# load_uploaded_file - loads a file uploaded by the user | |
# :param file_obj (POTENTIALLY list): Gradio file object inside a list | |
# :param int max_pages: the maximum number of pages to load from a PDF | |
# :param bool lower: whether to lowercase the text | |
# :return str: the text of the file | |
# """ | |
# global ocr_model | |
# logger = logging.getLogger(__name__) | |
# # check if mysterious file object is a list | |
# if isinstance(file_obj, list): | |
# file_obj = file_obj[0] | |
# file_path = Path(file_obj.name) | |
# try: | |
# logger.info(f"Loading file:\t{file_path}") | |
# if file_path.suffix in [".txt", ".md"]: | |
# with open(file_path, "r", encoding="utf-8", errors="ignore") as f: | |
# raw_text = f.read() | |
# text = clean(raw_text, lower=lower) | |
# elif file_path.suffix == ".pdf": | |
# logger.info(f"loading a PDF file: {file_path.name}") | |
# max_pages = int(os.environ.get("APP_OCR_MAX_PAGES", max_pages)) | |
# logger.info(f"max_pages is: {max_pages}. Starting conversion...") | |
# conversion_stats = convert_PDF_to_Text( | |
# file_path, | |
# ocr_model=ocr_model, | |
# max_pages=max_pages, | |
# ) | |
# text = conversion_stats["converted_text"] | |
# else: | |
# logger.error(f"Unknown file type:\t{file_path.suffix}") | |
# text = "ERROR - check file - unknown file type. PDF, TXT, and MD are supported." | |
# return text | |
# except Exception as e: | |
# logger.error(f"Trying to load file:\t{file_path},\nerror:\t{e}") | |
# return f"Error: Could not read file {file_path.name}. Make sure it is a PDF, TXT, or MD file." | |
def load_uploaded_file(file_objs, max_pages: int = 20, lower: bool = False) -> str: | |
""" | |
load_uploaded_files - loads multiple files uploaded by the user and concatenates their contents | |
:param file_objs (list): List of Gradio file objects | |
:param int max_pages: the maximum number of pages to load from a PDF | |
:param bool lower: whether to lowercase the text | |
:return str: the concatenated text of all the files | |
""" | |
global ocr_model | |
logger = logging.getLogger(__name__) | |
concatenated_text = "" # Initialize an empty string to concatenate text | |
try: | |
for file_obj in file_objs: | |
file_path = Path(file_obj.name) | |
logger.info(f"Loading file:\t{file_path}") | |
if file_path.suffix in [".txt", ".md"]: | |
with open(file_path, "r", encoding="utf-8", errors="ignore") as f: | |
raw_text = f.read() | |
text = clean(raw_text, lower=lower) | |
elif file_path.suffix == ".pdf": | |
logger.info(f"loading a PDF file: {file_path.name}") | |
max_pages = int(os.environ.get("APP_OCR_MAX_PAGES", max_pages)) | |
logger.info(f"max_pages is: {max_pages}. Starting conversion...") | |
conversion_stats = convert_PDF_to_Text( | |
file_path, | |
ocr_model=ocr_model, | |
max_pages=max_pages, | |
) | |
text = conversion_stats["converted_text"] | |
else: | |
logger.error(f"Unknown file type:\t{file_path.suffix}") | |
text = f"ERROR - check file - unknown file type. PDF, TXT, and MD are supported." | |
concatenated_text += text # Concatenate text from each file | |
return concatenated_text | |
except Exception as e: | |
logger.error(f"Error: {e}") | |
return f"Error: Could not read one or more files. Make sure they are PDF, TXT, or MD files." | |
def parse_args(): | |
"""arguments for the command line interface""" | |
parser = argparse.ArgumentParser( | |
description="Document Summarization - Demo", | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter, | |
epilog="Runs a local-only web UI to summarize documents. pass --share for a public link to share.", | |
) | |
parser.add_argument( | |
"--share", | |
dest="share", | |
action="store_true", | |
help="Create a public link to share", | |
) | |
parser.add_argument( | |
"-m", | |
"--model", | |
type=str, | |
default=None, | |
help=f"Add a custom model to the list of models: {pp.pformat(MODEL_OPTIONS, compact=True)}", | |
) | |
parser.add_argument( | |
"-nb", | |
"--add_beam_option", | |
type=int, | |
default=None, | |
help=f"Add a beam search option to the demo UI options, default: {pp.pformat(BEAM_OPTIONS, compact=True)}", | |
) | |
parser.add_argument( | |
"-batch", | |
"--token_batch_option", | |
type=int, | |
default=None, | |
help=f"Add a token batch size to the demo UI options, default: {pp.pformat(TOKEN_BATCH_OPTIONS, compact=True)}", | |
) | |
parser.add_argument( | |
"-max_agg", | |
"-2x", | |
"--aggregator_beam_boost", | |
dest="aggregator_beam_boost", | |
action="store_true", | |
help="Double the number of beams for the aggregator during beam search", | |
) | |
parser.add_argument( | |
"-level", | |
"--log_level", | |
type=str, | |
default="INFO", | |
choices=["DEBUG", "INFO", "WARNING", "ERROR"], | |
help="Set the logging level", | |
) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
"""main - the main function of the app""" | |
logger = logging.getLogger(__name__) | |
args = parse_args() | |
logger.setLevel(args.log_level) | |
logger.info(f"args: {pp.pformat(args.__dict__, compact=True)}") | |
# add any custom options | |
if args.model is not None: | |
logger.info(f"Adding model {args.model} to the list of models") | |
MODEL_OPTIONS.append(args.model) | |
if args.add_beam_option is not None: | |
logger.info(f"Adding beam search option {args.add_beam_option} to the list") | |
BEAM_OPTIONS.append(args.add_beam_option) | |
if args.token_batch_option is not None: | |
logger.info(f"Adding token batch option {args.token_batch_option} to the list") | |
TOKEN_BATCH_OPTIONS.append(args.token_batch_option) | |
if args.aggregator_beam_boost: | |
logger.info("Doubling aggregator num_beams") | |
_agg_cfg = aggregator.get_generation_config() | |
_agg_cfg["num_beams"] = _agg_cfg["num_beams"] * 2 | |
aggregator.update_generation_config(**_agg_cfg) | |
logger.info("Loading OCR model") | |
with contextlib.redirect_stdout(None): | |
ocr_model = ocr_predictor( | |
"db_resnet50", | |
"crnn_mobilenet_v3_large", | |
pretrained=True, | |
assume_straight_pages=True, | |
) | |
# load the examples | |
name_to_path = load_example_filenames(_here / "examples") | |
logger.info(f"Loaded {len(name_to_path)} examples") | |
demo = gr.Blocks(title="Document Summarization") | |
_examples = list(name_to_path.keys()) | |
logger.info("Starting app instance") | |
with demo: | |
with gr.Column(): | |
gr.HTML("<center><h1>Anushandhan Mitra</h1></center>") | |
# gr.Markdown( | |
# """An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://hf.co/datasets/kmfoda/booksum). Architectures [in this demo](https://hf.co/spaces/pszemraj/document-summarization) are [LongT5-base](https://hf.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://hf.co/pszemraj/pegasus-x-large-book-summary). | |
# **Want more performance? Run this demo from a free Google Colab GPU:**. | |
# <br> | |
# <a href="https://colab.research.google.com/gist/pszemraj/52f67cf7326e780155812a6a1f9bb724/document-summarization-on-gpu.ipynb"> | |
# <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> | |
# </a> | |
# <br> | |
# """ | |
# ) | |
gr.HTML("<p>Load Inputs & Select Parameters</p>") | |
gr.Markdown( | |
"""Enter/paste text below, or upload a file. Pick a model & adjust params (_optional_), and press **Generate Summary!** | |
""" | |
) | |
with gr.Row(variant="compact"): | |
# with gr.Column(scale=0.5, variant="compact"): | |
# model_name = gr.Dropdown( | |
# choices=MODEL_OPTIONS, | |
# value=MODEL_OPTIONS[0], | |
# label="Model Name", | |
# ) | |
# num_beams = gr.Radio( | |
# choices=BEAM_OPTIONS, | |
# value=BEAM_OPTIONS[len(BEAM_OPTIONS) // 2], | |
# label="Beam Search: # of Beams", | |
# ) | |
# load_examples_button = gr.Button( | |
# "Load Example in Dropdown", | |
# ) | |
# load_file_button = gr.Button("Upload & Process File") | |
with gr.Column(variant="compact"): | |
# model_name = gr.Dropdown( | |
# choices=MODEL_OPTIONS, | |
# value=MODEL_OPTIONS[0], | |
# label="Model Name", | |
# ) | |
model_name = gr.Dropdown( | |
choices=MODEL_OPTIONS, | |
value=MODAL_VALUES[0], | |
label="Model Name", | |
) | |
# example_name = gr.Dropdown( | |
# _examples, | |
# label="Examples", | |
# value=random.choice(_examples), | |
# ) | |
uploaded_file = gr.File( | |
label="File Upload", | |
file_count="multiple", | |
file_types=[".txt", ".md", ".pdf"], | |
type="file", | |
) | |
load_file_button = gr.Button("Upload & Process File",varint="primary") | |
with gr.Row(): | |
input_text = gr.Textbox( | |
lines=4, | |
max_lines=12, | |
label="Text to Summarize", | |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)", | |
) | |
gr.Markdown("---") | |
with gr.Column(): | |
# gr.Markdown("## Generate Summary") | |
with gr.Row(): | |
summarize_button = gr.Button( | |
"Generate Summary", | |
variant="primary", | |
) | |
# gr.Markdown( | |
# "_Summarization should take ~1-2 minutes for most settings, but may extend up to 5-10 minutes in some scenarios._" | |
# ) | |
output_text = gr.HTML("<p><em>Summarization should take ~1-2 minutes for most settings, but may extend up to 5-10 minutes in some scenarios.</em></p>") | |
with gr.Column(variant="panel"): | |
gr.Markdown("### Results") | |
with gr.Row(): | |
with gr.Column(variant="compact"): | |
gr.Markdown( | |
"Download the summary as a text file, with parameters and scores." | |
) | |
text_file = gr.File( | |
label="Download as Text File", | |
file_count="single", | |
type="file", | |
interactive=False, | |
) | |
with gr.Column(variant="compact"): | |
gr.Markdown( | |
"Scores **roughly** represent the summary quality as a measure of the model's 'confidence'. less-negative numbers (closer to 0) are better." | |
) | |
summary_scores = gr.Textbox( | |
label="Summary Scores", | |
placeholder="Summary scores will appear here", | |
) | |
with gr.Column(variant="panel"): | |
gr.Markdown("### **Summary Output**") | |
summary_text = gr.HTML( | |
label="Summary", | |
value="<center><i>Summary will appear here!</i></center>", | |
) | |
# with gr.Column(): | |
# gr.Markdown("### **Aggregate Summary Batches**") | |
# gr.Markdown( | |
# "_Note: this is an experimental feature. Feedback welcome in the [discussions](https://hf.co/spaces/pszemraj/document-summarization/discussions)!_" | |
# ) | |
# with gr.Row(): | |
# aggregate_button = gr.Button( | |
# "Aggregate!", | |
# variant="primary", | |
# ) | |
# gr.Markdown( | |
# f"""Aggregate the above batches into a cohesive summary. | |
# - A secondary instruct-tuned LM consolidates info | |
# - Current model: [{AGGREGATE_MODEL}](https://hf.co/{AGGREGATE_MODEL}) | |
# """ | |
# ) | |
# with gr.Column(variant="panel"): | |
# aggregated_summary = gr.HTML( | |
# label="Aggregate Summary", | |
# value="<center><i>Aggregate summary will appear here!</i></center>", | |
# ) | |
# gr.Markdown( | |
# "\n\n_Aggregate summary is also appended to the bottom of the `.txt` file._" | |
# ) | |
gr.Markdown("---") | |
with gr.Column(): | |
gr.Markdown("### Advanced Settings") | |
# gr.Markdown( | |
# "Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_." | |
# ) | |
with gr.Row(variant="compact"): | |
length_penalty = gr.Slider( | |
minimum=0.3, | |
maximum=1.1, | |
label="length penalty", | |
value=0.7, | |
step=0.05, | |
) | |
# token_batch_length = gr.Radio( | |
# choices=TOKEN_BATCH_OPTIONS, | |
# label="token batch length", | |
# # select median option | |
# value=TOKEN_BATCH_OPTIONS[len(TOKEN_BATCH_OPTIONS) // 2], | |
# ) | |
# with gr.Row(variant="compact"): | |
# repetition_penalty = gr.Slider( | |
# minimum=1.0, | |
# maximum=5.0, | |
# label="repetition penalty", | |
# value=1.5, | |
# step=0.1, | |
# ) | |
# no_repeat_ngram_size = gr.Radio( | |
# choices=[2, 3, 4, 5], | |
# label="no repeat ngram size", | |
# value=3, | |
# ) | |
# predrop_stopwords = gr.Checkbox( | |
# label="Drop Stopwords (Pre-Truncation)", | |
# value=False, | |
# ) | |
# with gr.Column(): | |
# gr.Markdown("## About") | |
# gr.Markdown( | |
# "- Models are fine-tuned on the [🅱️ookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that generalizes well and is useful for summarizing text in academic and everyday use." | |
# ) | |
# gr.Markdown( | |
# "- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://hf.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://hf.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)." | |
# ) | |
# gr.Markdown( | |
# "Adjust the max input words & max PDF pages for OCR by duplicating this space and [setting the environment variables](https://hf.co/docs/hub/spaces-overview#managing-secrets) `APP_MAX_WORDS` and `APP_OCR_MAX_PAGES` to the desired integer values." | |
# ) | |
# gr.Markdown("---") | |
# load_examples_button.click( | |
# fn=load_single_example_text, inputs=[example_name], outputs=[input_text] | |
# ) | |
load_file_button.click( | |
fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text] | |
) | |
summarize_button.click( | |
fn=proc_submission, | |
inputs=[ | |
input_text, | |
model_name, | |
length_penalty | |
], | |
outputs=[output_text, summary_text,summary_scores, text_file], | |
) | |
# aggregate_button.click( | |
# fn=aggregate_text, | |
# inputs=[summary_text, text_file], | |
# outputs=[aggregated_summary], | |
# ) | |
demo.launch(enable_queue=True, share=args.share) | |