Spaces:
Build error
Build error
Update app/tapas.py
Browse files- app/tapas.py +6 -15
app/tapas.py
CHANGED
@@ -9,12 +9,7 @@ def load_model_and_tokenizer():
|
|
9 |
"""
|
10 |
Load
|
11 |
"""
|
12 |
-
# Load pretrained tokenizer: TAPAS finetuned on WikiTable Questions
|
13 |
-
# tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq")
|
14 |
tokenizer = AutoTokenizer.from_pretrained("Meena/table-question-answering-tapas")
|
15 |
-
|
16 |
-
# Load pretrained model: TAPAS finetuned on WikiTable Questions
|
17 |
-
# model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")
|
18 |
model = AutoModelForTableQuestionAnswering.from_pretrained("Meena/table-question-answering-tapas")
|
19 |
|
20 |
# Return tokenizer and model
|
@@ -25,13 +20,8 @@ def prepare_inputs(table, queries, tokenizer):
|
|
25 |
"""
|
26 |
Convert dictionary into data frame and tokenize inputs given queries.
|
27 |
"""
|
28 |
-
# Prepare inputs
|
29 |
-
# table = pd.DataFrame.from_dict(data)
|
30 |
-
# table = netflix_df[['title', 'release_year', 'rating']].astype('str').head(50)
|
31 |
table = table.astype('str').head(100)
|
32 |
inputs = tokenizer(table=table, queries=queries, padding='max_length', return_tensors="pt")
|
33 |
-
|
34 |
-
# Return things
|
35 |
return table, inputs
|
36 |
|
37 |
|
@@ -83,7 +73,7 @@ def show_answers(queries, answers, aggregation_predictions_string):
|
|
83 |
Visualize the postprocessed answers.
|
84 |
"""
|
85 |
agg = {"NONE": lambda x: x, "SUM" : lambda x: sum(x), "AVERAGE": lambda x: (sum(x) / len(x)), "COUNT": lambda x: len(x)}
|
86 |
-
|
87 |
for query, answer, predicted_agg in zip(queries, answers, aggregation_predictions_string):
|
88 |
print(query)
|
89 |
if predicted_agg == "NONE":
|
@@ -91,13 +81,14 @@ def show_answers(queries, answers, aggregation_predictions_string):
|
|
91 |
else:
|
92 |
if all([not p.match(val) == None for val in answer.split(', ')]):
|
93 |
# print("Predicted answer: " + predicted_agg + "(" + answer + ") = " + str(agg[predicted_agg](list(map(float, answer.split(','))))))
|
94 |
-
result =
|
95 |
elif predicted_agg == "COUNT":
|
96 |
# print("Predicted answer: " + predicted_agg + "(" + answer + ") = " + str(agg[predicted_agg](answer.split(','))))
|
97 |
-
result =
|
98 |
else:
|
99 |
-
result =
|
100 |
-
|
|
|
101 |
|
102 |
def execute_query(queries, table):
|
103 |
|
|
|
9 |
"""
|
10 |
Load
|
11 |
"""
|
|
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained("Meena/table-question-answering-tapas")
|
|
|
|
|
|
|
13 |
model = AutoModelForTableQuestionAnswering.from_pretrained("Meena/table-question-answering-tapas")
|
14 |
|
15 |
# Return tokenizer and model
|
|
|
20 |
"""
|
21 |
Convert dictionary into data frame and tokenize inputs given queries.
|
22 |
"""
|
|
|
|
|
|
|
23 |
table = table.astype('str').head(100)
|
24 |
inputs = tokenizer(table=table, queries=queries, padding='max_length', return_tensors="pt")
|
|
|
|
|
25 |
return table, inputs
|
26 |
|
27 |
|
|
|
73 |
Visualize the postprocessed answers.
|
74 |
"""
|
75 |
agg = {"NONE": lambda x: x, "SUM" : lambda x: sum(x), "AVERAGE": lambda x: (sum(x) / len(x)), "COUNT": lambda x: len(x)}
|
76 |
+
results = []
|
77 |
for query, answer, predicted_agg in zip(queries, answers, aggregation_predictions_string):
|
78 |
print(query)
|
79 |
if predicted_agg == "NONE":
|
|
|
81 |
else:
|
82 |
if all([not p.match(val) == None for val in answer.split(', ')]):
|
83 |
# print("Predicted answer: " + predicted_agg + "(" + answer + ") = " + str(agg[predicted_agg](list(map(float, answer.split(','))))))
|
84 |
+
result = str(agg[predicted_agg](list(map(float, answer.split(',')))))
|
85 |
elif predicted_agg == "COUNT":
|
86 |
# print("Predicted answer: " + predicted_agg + "(" + answer + ") = " + str(agg[predicted_agg](answer.split(','))))
|
87 |
+
result = str(agg[predicted_agg](answer.split(',')))
|
88 |
else:
|
89 |
+
result = predicted_agg + " > " + answer
|
90 |
+
results.append(result)
|
91 |
+
return results
|
92 |
|
93 |
def execute_query(queries, table):
|
94 |
|