Spaces:
Runtime error
Runtime error
First commit
Browse files- app.py +252 -0
- classifier.pth +3 -0
app.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import transforms
|
7 |
+
from transformers import BertTokenizer, AutoModel
|
8 |
+
from torch.utils.data import Dataset, DataLoader, random_split
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
from typing import List
|
11 |
+
from dataclasses import dataclass
|
12 |
+
import gradio as gr
|
13 |
+
import torch, re
|
14 |
+
import numpy as np
|
15 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration, ViTImageProcessor, BertTokenizer, BlipProcessor, BlipForQuestionAnswering, AutoProcessor, AutoModelForCausalLM, DonutProcessor, VisionEncoderDecoderModel, Pix2StructProcessor, Pix2StructForConditionalGeneration, AutoModelForSeq2SeqLM
|
16 |
+
|
17 |
+
import librosa
|
18 |
+
from PIL import Image
|
19 |
+
from torch.nn.utils import rnn
|
20 |
+
from gtts import gTTS
|
21 |
+
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
|
24 |
+
class LabelClassifier(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super(LabelClassifier, self).__init__()
|
27 |
+
self.text_encoder = AutoModel.from_pretrained('bert-base-uncased')
|
28 |
+
self.image_encoder = AutoModel.from_pretrained('microsoft/swin-tiny-patch4-window7-224')
|
29 |
+
self.intermediate_dim = 128
|
30 |
+
self.fusion = nn.Sequential(
|
31 |
+
nn.Linear(self.text_encoder.config.hidden_size + self.image_encoder.config.hidden_size, self.intermediate_dim),
|
32 |
+
nn.ReLU(),
|
33 |
+
nn.Dropout(0.5),
|
34 |
+
)
|
35 |
+
self.classifier = nn.Linear(self.intermediate_dim, 6) # Concatenating BERT output and Swin Transformer output
|
36 |
+
|
37 |
+
self.criterion = nn.CrossEntropyLoss()
|
38 |
+
|
39 |
+
|
40 |
+
def forward(self,
|
41 |
+
input_ids: torch.LongTensor,pixel_values: torch.FloatTensor, attention_mask: torch.LongTensor = None, token_type_ids: torch.LongTensor = None, labels: torch.LongTensor = None):
|
42 |
+
|
43 |
+
encoded_text = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
44 |
+
encoded_image = self.image_encoder(pixel_values=pixel_values)
|
45 |
+
|
46 |
+
# print(encoded_text['last_hidden_state'].shape)
|
47 |
+
# print(encoded_image['last_hidden_state'].shape)
|
48 |
+
|
49 |
+
fused_state = self.fusion(torch.cat((encoded_text['pooler_output'], encoded_image['pooler_output']), dim=1))
|
50 |
+
|
51 |
+
|
52 |
+
# Pass through the classifier
|
53 |
+
logits = self.classifier(fused_state)
|
54 |
+
|
55 |
+
out = {"logits": logits}
|
56 |
+
|
57 |
+
if labels is not None:
|
58 |
+
loss = self.criterion(logits, labels)
|
59 |
+
out["loss"] = loss
|
60 |
+
|
61 |
+
|
62 |
+
return out
|
63 |
+
|
64 |
+
model = LabelClassifier().to(device)
|
65 |
+
model.load_state_dict(torch.load('classifier.pth'))
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
70 |
+
processor = ViTImageProcessor.from_pretrained('microsoft/swin-tiny-patch4-window7-224')
|
71 |
+
|
72 |
+
|
73 |
+
# Load the Whisper model in Hugging Face format:
|
74 |
+
# processor2 = WhisperProcessor.from_pretrained("openai/whisper-medium.en")
|
75 |
+
# model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium.en")
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
def m1(que, image):
|
80 |
+
processor3 = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
81 |
+
model3 = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large").to("cuda")
|
82 |
+
|
83 |
+
inputs = processor3(image, que, return_tensors="pt").to("cuda")
|
84 |
+
|
85 |
+
out = model3.generate(**inputs)
|
86 |
+
return processor3.decode(out[0], skip_special_tokens=True)
|
87 |
+
|
88 |
+
def m2(que, image):
|
89 |
+
processor3 = AutoProcessor.from_pretrained("microsoft/git-large-textvqa")
|
90 |
+
model3 = AutoModelForCausalLM.from_pretrained("microsoft/git-large-textvqa")
|
91 |
+
|
92 |
+
pixel_values = processor3(images=image, return_tensors="pt").pixel_values
|
93 |
+
|
94 |
+
input_ids = processor3(text=que, add_special_tokens=False).input_ids
|
95 |
+
input_ids = [processor3.tokenizer.cls_token_id] + input_ids
|
96 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
97 |
+
|
98 |
+
generated_ids = model3.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
|
99 |
+
return processor3.batch_decode(generated_ids, skip_special_tokens=True)
|
100 |
+
|
101 |
+
def m3(que, image):
|
102 |
+
processor3 = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
103 |
+
model3 = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
104 |
+
|
105 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
106 |
+
model3.to(device)
|
107 |
+
|
108 |
+
prompt = "<s_docvqa><s_question>{que}</s_question><s_answer>"
|
109 |
+
decoder_input_ids = processor3.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
110 |
+
|
111 |
+
pixel_values = processor3(image, return_tensors="pt").pixel_values
|
112 |
+
|
113 |
+
outputs = model3.generate(
|
114 |
+
pixel_values.to(device),
|
115 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
116 |
+
max_length=model3.decoder.config.max_position_embeddings,
|
117 |
+
pad_token_id=processor3.tokenizer.pad_token_id,
|
118 |
+
eos_token_id=processor3.tokenizer.eos_token_id,
|
119 |
+
use_cache=True,
|
120 |
+
bad_words_ids=[[processor3.tokenizer.unk_token_id]],
|
121 |
+
return_dict_in_generate=True,
|
122 |
+
)
|
123 |
+
|
124 |
+
sequence = processor3.batch_decode(outputs.sequences)[0]
|
125 |
+
sequence = sequence.replace(processor3.tokenizer.eos_token, "").replace(processor3.tokenizer.pad_token, "")
|
126 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
127 |
+
return processor3.token2json(sequence)['answer']
|
128 |
+
|
129 |
+
def m4(que, image):
|
130 |
+
processor3 = Pix2StructProcessor.from_pretrained('google/matcha-plotqa-v1')
|
131 |
+
model3 = Pix2StructForConditionalGeneration.from_pretrained('google/matcha-plotqa-v1')
|
132 |
+
|
133 |
+
inputs = processor3(images=image, text=que, return_tensors="pt")
|
134 |
+
predictions = model3.generate(**inputs, max_new_tokens=512)
|
135 |
+
return processor3.decode(predictions[0], skip_special_tokens=True)
|
136 |
+
|
137 |
+
def m5(que, image):
|
138 |
+
|
139 |
+
processor3 = AutoProcessor.from_pretrained("google/pix2struct-ocrvqa-large")
|
140 |
+
model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-ocrvqa-large")
|
141 |
+
|
142 |
+
inputs = processor3(images=image, text=que, return_tensors="pt").to("cuda")
|
143 |
+
|
144 |
+
predictions = model3.generate(**inputs)
|
145 |
+
return processor3.decode(predictions[0], skip_special_tokens=True)
|
146 |
+
|
147 |
+
def m6(que, image):
|
148 |
+
processor3 = AutoProcessor.from_pretrained("google/pix2struct-infographics-vqa-large")
|
149 |
+
model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-infographics-vqa-large")
|
150 |
+
|
151 |
+
inputs = processor3(images=image, text=que, return_tensors="pt").to("cuda")
|
152 |
+
|
153 |
+
predictions = model3.generate(**inputs)
|
154 |
+
return processor3.decode(predictions[0], skip_special_tokens=True)
|
155 |
+
|
156 |
+
|
157 |
+
def predict_answer(category, que, image):
|
158 |
+
if category == 0:
|
159 |
+
return m1(que, image)
|
160 |
+
elif category == 1:
|
161 |
+
return m2(que, image)
|
162 |
+
elif category == 2:
|
163 |
+
return m3(que, image)
|
164 |
+
elif category == 3:
|
165 |
+
return m4(que, image)
|
166 |
+
elif category == 4:
|
167 |
+
return m5(que, image)
|
168 |
+
else:
|
169 |
+
return m6(que, image)
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
def transcribe_audio(audio):
|
174 |
+
# print(audio)
|
175 |
+
processor2 = WhisperProcessor.from_pretrained("openai/whisper-large-v3",language='en')
|
176 |
+
model2 = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v3")
|
177 |
+
|
178 |
+
sampling_rate = audio[0]
|
179 |
+
audio_data = audio[1]
|
180 |
+
|
181 |
+
# print(np.array([audio_data]).shape)
|
182 |
+
audio_data_float = np.array(audio_data).astype(np.float32)
|
183 |
+
resampled_audio_data = librosa.resample(audio_data_float, orig_sr=sampling_rate, target_sr=16000)
|
184 |
+
|
185 |
+
|
186 |
+
# Use the model and processor to transcribe the audio:
|
187 |
+
input_features = processor2(
|
188 |
+
resampled_audio_data, sampling_rate=16000, return_tensors="pt"
|
189 |
+
).input_features
|
190 |
+
|
191 |
+
# Generate token ids
|
192 |
+
predicted_ids = model2.generate(input_features)
|
193 |
+
|
194 |
+
# Decode token ids to text
|
195 |
+
transcription = processor2.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
196 |
+
|
197 |
+
return transcription
|
198 |
+
|
199 |
+
|
200 |
+
def predict_category(que, input_image):
|
201 |
+
# print(type(input_image))
|
202 |
+
# print(input_image)
|
203 |
+
|
204 |
+
encoded_text = tokenizer(
|
205 |
+
text=que,
|
206 |
+
padding='longest',
|
207 |
+
max_length=24,
|
208 |
+
truncation=True,
|
209 |
+
return_tensors='pt',
|
210 |
+
return_token_type_ids=True,
|
211 |
+
return_attention_mask=True,
|
212 |
+
)
|
213 |
+
|
214 |
+
encoded_image = processor(input_image, return_tensors='pt').to(device)
|
215 |
+
|
216 |
+
dict = {
|
217 |
+
'input_ids': encoded_text['input_ids'].to(device),
|
218 |
+
'token_type_ids': encoded_text['token_type_ids'].to(device),
|
219 |
+
'attention_mask': encoded_text['attention_mask'].to(device),
|
220 |
+
'pixel_values': encoded_image['pixel_values'].to(device)
|
221 |
+
}
|
222 |
+
|
223 |
+
output = model(input_ids=dict['input_ids'],token_type_ids=dict['token_type_ids'],attention_mask=dict['attention_mask'],pixel_values=dict['pixel_values'])
|
224 |
+
|
225 |
+
preds = output["logits"].argmax(axis=-1).cpu().numpy()
|
226 |
+
|
227 |
+
return preds[0]
|
228 |
+
|
229 |
+
|
230 |
+
def combine(audio, input_image):
|
231 |
+
que = transcribe_audio(audio)
|
232 |
+
# que = "What is the animal here?"
|
233 |
+
|
234 |
+
image = Image.fromarray(input_image).convert('RGB')
|
235 |
+
category = predict_category(que, image)
|
236 |
+
|
237 |
+
answer = predict_answer(0, que, image)
|
238 |
+
|
239 |
+
# print(category)
|
240 |
+
|
241 |
+
tts = gTTS(answer)
|
242 |
+
tts.save('answer.mp3')
|
243 |
+
return que, answer, 'answer.mp3'
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
# Define the Gradio interface for recording audio and displaying the transcription
|
248 |
+
model_interface = gr.Interface(fn=combine, inputs=[gr.Microphone(label="Ask your question"),gr.Image(label="Upload the image")], outputs=[gr.Text(label="Transcribed Question"), gr.Text(label="Answer"), gr.Audio(label="Audio Answer")])
|
249 |
+
# image_upload_interface = gr.Interface(fn=upload_image, inputs=gr.Image(label="Upload the image"), outputs="text")
|
250 |
+
|
251 |
+
# Launch the Gradio interface
|
252 |
+
model_interface.launch(debug=True)
|
classifier.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd3c37a6110305f0641190ac90f5db3e527056f5a9bdbe2c11214256435c62fa
|
3 |
+
size 549215152
|