Spaces:
Sleeping
Sleeping
dylanglenister
commited on
Commit
·
d85186d
1
Parent(s):
833527f
FEAT: Consulting knowledge base for RAG.
Browse files- src/core/memory_manager.py +74 -20
src/core/memory_manager.py
CHANGED
|
@@ -2,13 +2,14 @@
|
|
| 2 |
|
| 3 |
from src.data.connection import ActionFailed
|
| 4 |
from src.data.repositories import account as account_repo
|
|
|
|
| 5 |
from src.data.repositories import medical_memory as memory_repo
|
| 6 |
from src.data.repositories import patient as patient_repo
|
| 7 |
from src.data.repositories import session as session_repo
|
| 8 |
from src.models.account import Account
|
| 9 |
from src.models.patient import Patient
|
| 10 |
from src.models.session import Message, Session
|
| 11 |
-
from src.services import summariser
|
| 12 |
from src.services.nvidia import nvidia_chat
|
| 13 |
from src.utils.embeddings import EmbeddingClient
|
| 14 |
from src.utils.logger import logger
|
|
@@ -245,23 +246,28 @@ class MemoryManager:
|
|
| 245 |
logger().warning(f"Could not retrieve recent memories for enhanced context: {e}")
|
| 246 |
|
| 247 |
# 2. Get semantically similar summaries (Long-Term Memory)
|
| 248 |
-
if self.embedder:
|
| 249 |
try:
|
| 250 |
query_embedding = self.embedder.embed([question])[0]
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
|
|
|
| 259 |
except (ActionFailed, Exception) as e:
|
| 260 |
logger().warning(f"Failed to perform LTM semantic search: {e}")
|
| 261 |
|
| 262 |
# 3. Consult knowledge base
|
| 263 |
-
info = self._consult_knowledge_base(
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
# 4. Get current conversation context
|
| 267 |
try:
|
|
@@ -275,17 +281,65 @@ class MemoryManager:
|
|
| 275 |
except ActionFailed as e:
|
| 276 |
logger().warning(f"Could not retrieve current session context: {e}")
|
| 277 |
|
| 278 |
-
return "\n\n".join(context_parts)
|
| 279 |
|
| 280 |
# --- Private Helper Methods ---
|
| 281 |
|
| 282 |
-
def _consult_knowledge_base(
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
return ""
|
| 290 |
|
| 291 |
async def _update_session_title_if_first_message(
|
|
|
|
| 2 |
|
| 3 |
from src.data.connection import ActionFailed
|
| 4 |
from src.data.repositories import account as account_repo
|
| 5 |
+
from src.data.repositories import information as info_repo
|
| 6 |
from src.data.repositories import medical_memory as memory_repo
|
| 7 |
from src.data.repositories import patient as patient_repo
|
| 8 |
from src.data.repositories import session as session_repo
|
| 9 |
from src.models.account import Account
|
| 10 |
from src.models.patient import Patient
|
| 11 |
from src.models.session import Message, Session
|
| 12 |
+
from src.services import reranker, summariser
|
| 13 |
from src.services.nvidia import nvidia_chat
|
| 14 |
from src.utils.embeddings import EmbeddingClient
|
| 15 |
from src.utils.logger import logger
|
|
|
|
| 246 |
logger().warning(f"Could not retrieve recent memories for enhanced context: {e}")
|
| 247 |
|
| 248 |
# 2. Get semantically similar summaries (Long-Term Memory)
|
| 249 |
+
if self.embedder and self.embedder.is_available():
|
| 250 |
try:
|
| 251 |
query_embedding = self.embedder.embed([question])[0]
|
| 252 |
+
if query_embedding:
|
| 253 |
+
ltm_results = memory_repo.search_memories_semantic(
|
| 254 |
+
patient_id=patient_id,
|
| 255 |
+
query_embedding=query_embedding,
|
| 256 |
+
limit=2
|
| 257 |
+
)
|
| 258 |
+
if ltm_results:
|
| 259 |
+
ltm_summaries = [result.summary for result in ltm_results]
|
| 260 |
+
context_parts.append("Semantically relevant medical history (LTM):\n" + "\n".join(ltm_summaries))
|
| 261 |
except (ActionFailed, Exception) as e:
|
| 262 |
logger().warning(f"Failed to perform LTM semantic search: {e}")
|
| 263 |
|
| 264 |
# 3. Consult knowledge base
|
| 265 |
+
info = await self._consult_knowledge_base(
|
| 266 |
+
question=question,
|
| 267 |
+
nvidia_rotator=nvidia_rotator
|
| 268 |
+
)
|
| 269 |
+
if info:
|
| 270 |
+
context_parts.append(info)
|
| 271 |
|
| 272 |
# 4. Get current conversation context
|
| 273 |
try:
|
|
|
|
| 281 |
except ActionFailed as e:
|
| 282 |
logger().warning(f"Could not retrieve current session context: {e}")
|
| 283 |
|
| 284 |
+
return "\n\n".join(filter(None, context_parts))
|
| 285 |
|
| 286 |
# --- Private Helper Methods ---
|
| 287 |
|
| 288 |
+
async def _consult_knowledge_base(
|
| 289 |
+
self,
|
| 290 |
+
question: str,
|
| 291 |
+
nvidia_rotator: APIKeyRotator
|
| 292 |
+
) -> str:
|
| 293 |
+
"""
|
| 294 |
+
Embeds a question, queries the knowledge base for relevant chunks,
|
| 295 |
+
reranks them, and formats them into a context string.
|
| 296 |
+
"""
|
| 297 |
+
if not self.embedder or not self.embedder.is_available():
|
| 298 |
+
logger().warning("Embedder not available, skipping knowledge base consultation.")
|
| 299 |
+
return ""
|
| 300 |
+
|
| 301 |
+
try:
|
| 302 |
+
# 1. Embed the user's question
|
| 303 |
+
query_embedding = self.embedder.embed([question])[0]
|
| 304 |
+
if not query_embedding:
|
| 305 |
+
logger().warning("Failed to generate query embedding.")
|
| 306 |
+
return ""
|
| 307 |
+
|
| 308 |
+
# 2. Retrieve initial candidates from MongoDB
|
| 309 |
+
initial_chunks = info_repo.search_chunks_semantic(
|
| 310 |
+
query_embedding=query_embedding,
|
| 311 |
+
limit=10 # Retrieve more candidates for the reranker to process
|
| 312 |
+
)
|
| 313 |
+
if not initial_chunks:
|
| 314 |
+
logger().info("No relevant chunks found in the knowledge base.")
|
| 315 |
+
return ""
|
| 316 |
+
|
| 317 |
+
# 3. Rerank the results for semantic relevance
|
| 318 |
+
reranked_chunks = await reranker.rerank_documents(
|
| 319 |
+
query=question,
|
| 320 |
+
documents=initial_chunks,
|
| 321 |
+
rotator=nvidia_rotator,
|
| 322 |
+
top_k=3 # Keep the top 3 most relevant results
|
| 323 |
+
)
|
| 324 |
+
if not reranked_chunks:
|
| 325 |
+
logger().warning("Reranking failed to return any chunks.")
|
| 326 |
+
return ""
|
| 327 |
+
|
| 328 |
+
# 4. Format the final response
|
| 329 |
+
context_header = "Consulted Knowledge Base for context:"
|
| 330 |
+
formatted_chunks = []
|
| 331 |
+
for chunk in reranked_chunks:
|
| 332 |
+
source = chunk.metadata.source
|
| 333 |
+
content = chunk.content.strip()
|
| 334 |
+
formatted_chunks.append(f"[Source: {source}]\n{content}")
|
| 335 |
+
|
| 336 |
+
return f"{context_header}\n\n" + "\n\n".join(formatted_chunks)
|
| 337 |
+
|
| 338 |
+
except ActionFailed as e:
|
| 339 |
+
logger().error(f"A database error occurred while consulting the knowledge base: {e}")
|
| 340 |
+
except Exception as e:
|
| 341 |
+
logger().error(f"An unexpected error occurred during knowledge base consultation: {e}")
|
| 342 |
+
|
| 343 |
return ""
|
| 344 |
|
| 345 |
async def _update_session_title_if_first_message(
|