Spaces:
Paused
Paused
import os | |
from typing import List | |
from chainlit.types import AskFileResponse | |
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader, PDFLoader | |
from aimakerspace.openai_utils.prompts import ( | |
UserRolePrompt, | |
SystemRolePrompt, | |
AssistantRolePrompt, | |
) | |
from aimakerspace.openai_utils.embedding import EmbeddingModel | |
from aimakerspace.vectordatabase import VectorDatabase | |
from aimakerspace.openai_utils.chatmodel import ChatOpenAI | |
import chainlit as cl | |
system_template = """\ | |
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer.""" | |
system_role_prompt = SystemRolePrompt(system_template) | |
user_prompt_template = """\ | |
Context: | |
{context} | |
Question: | |
{question} | |
""" | |
user_role_prompt = UserRolePrompt(user_prompt_template) | |
class RetrievalAugmentedQAPipeline: | |
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None: | |
self.llm = llm | |
self.vector_db_retriever = vector_db_retriever | |
async def arun_pipeline(self, user_query: str): | |
context_list = self.vector_db_retriever.search_by_text(user_query, k=25) | |
context_prompt = "" | |
for context in context_list: | |
context_prompt += context[0] + "\n" | |
formatted_system_prompt = system_role_prompt.create_message() | |
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt) | |
async def generate_response(): | |
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]): | |
yield chunk | |
return {"response": generate_response(), "context": context_list} | |
text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=400) | |
def process_text_file(file: AskFileResponse): | |
import tempfile | |
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file: | |
temp_file_path = temp_file.name | |
with open(temp_file_path, "wb") as f: | |
f.write(file.content) | |
text_loader = TextFileLoader(temp_file_path) | |
documents = text_loader.load_documents() | |
texts = text_splitter.split_texts(documents) | |
return texts | |
def process_pdf_file(file: AskFileResponse): | |
import tempfile | |
import PyPDF2 | |
# Create a temporary file for the PDF | |
with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=".pdf") as temp_file: | |
temp_file_path = temp_file.name | |
# Write the binary content of the PDF file to the temporary file | |
with open(temp_file_path, "wb") as f: | |
f.write(file.content) | |
# Load and process the PDF using an appropriate PDF loader | |
pdf_loader = PDFLoader(temp_file_path) | |
documents = pdf_loader.load_documents() | |
# Split the extracted text from the documents | |
texts = text_splitter.split_texts(documents) | |
return texts | |
async def on_chat_start(): | |
files = None | |
# Wait for the user to upload a file | |
while files == None: | |
files = await cl.AskFileMessage( | |
content="Please upload a Text or PDF file to begin!", | |
accept=["text/plain","application/pdf"], | |
max_size_mb=2, | |
timeout=180, | |
).send() | |
file = files[0] | |
msg = cl.Message( | |
content=f"Processing `{file.name}`...", disable_human_feedback=True | |
) | |
await msg.send() | |
# load the file | |
if file.type == "text/plain": | |
texts = process_text_file(file) | |
elif file.type == "application/pdf": | |
texts = process_pdf_file(file) | |
else: | |
pass | |
print(f"Processing {len(texts)} text chunks") | |
# Create a dict vector store | |
vector_db = VectorDatabase() | |
vector_db = await vector_db.abuild_from_list(texts) | |
chat_openai = ChatOpenAI() | |
# Create a chain | |
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( | |
vector_db_retriever=vector_db, | |
llm=chat_openai | |
) | |
# Let the user know that the system is ready | |
msg.content = f"Processing `{file.name}` done. You can now ask questions!" | |
await msg.update() | |
cl.user_session.set("chain", retrieval_augmented_qa_pipeline) | |
async def main(message): | |
chain = cl.user_session.get("chain") | |
msg = cl.Message(content="") | |
result = await chain.arun_pipeline(message.content) | |
async for stream_resp in result["response"]: | |
await msg.stream_token(stream_resp) | |
await msg.send() |