MIGAVis / utils /utils.py
McHz1s's picture
Initial commit
d6ee7b8
import json
import math
import os
import cv2
import numpy as np
import torch
import yaml
import random
import torch.backends.cudnn as cudnn
from collections import OrderedDict
import torchvision
INT_MAX = 0x3f3f3f3f
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def ordered_load(stream, Loader=yaml.Loader, object_pairs_hook=OrderedDict):
class OrderedLoader(Loader):
pass
def construct_mapping(loader, node):
loader.flatten_mapping(node)
return object_pairs_hook(loader.construct_pairs(node))
OrderedLoader.add_constructor(yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, construct_mapping)
return yaml.load(stream, OrderedLoader)
def setup_seeds(seed, set_torch=True):
seed += int(os.environ.get('RANK', -1))
if set_torch:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed_all(seed)
# warnings.warn('You have chosen to seed training. '
# 'This will turn on the CUDNN deterministic setting, '
# 'which can slow down your training considerably! '
# 'You may see unexpected behavior when restarting '
# 'from checkpoints.')
np.random.seed(seed)
random.seed(seed)
def get_func_keyword(func):
"""
:param func: function
:return: sequence(tuple) of function keyword arguments.
"""
return func.__code__.co_varnames
def get_random_pt_from_mask(mask):
index = np.argwhere(mask != 0)
pt = random.randint(0, len(index))
return np.flip(index[pt])
def rescale_dets(detections, ratios):
xs, ys = detections[..., 0:4:2], detections[..., 1:4:2]
xs /= ratios[1]
ys /= ratios[0]
def rescale_pts(detections, ratios):
xs, ys = detections[..., 5:13:2], detections[..., 6:13:2]
xs /= ratios[1]
ys /= ratios[0]
def eval_bn(model, names):
for name, m in model.named_modules():
if not isinstance(m, torch.nn.modules.batchnorm.BatchNorm2d):
continue
for n in names:
if n in name:
m.eval()
def nms_with_bboxes(detections, nms_threshold):
# detections: [batch_size, 100, 5]
post_detections = []
post_pts = []
for i in range(len(detections)):
dets = detections[i]
# reject detections with negative scores
keep_inds = (dets[:, 4] > 0)
dets = dets[keep_inds]
boxes = dets[:, :4]
scores = dets[:, 4]
extreme_points = dets[:, 5:13]
keep_inds = torchvision.ops.nms(boxes, scores, nms_threshold)
boxes = boxes[keep_inds]
scores = scores[keep_inds]
extreme_points = extreme_points[keep_inds]
scores = torch.unsqueeze(scores, dim=1)
dets = torch.cat((boxes, scores), dim=1)
dets = dets.data.cpu().numpy()
extreme_points = extreme_points.data.cpu().numpy()
post_detections.append(dets)
post_pts.append(extreme_points)
return post_detections, post_pts
def load_json(json_path):
with open(json_path, 'r') as load_f:
re_json = json.load(load_f)
return re_json
def save_json(json_path, json_output):
with open(json_path, 'w') as output_json_file:
json.dump(json_output.copy(), output_json_file)
def get_worker_id():
worker_info = torch.utils.data.get_worker_info()
if worker_info is not None:
return worker_info.id
return 0
def custom_load_pretrained_dict(model_state_dict, pretrained_state_dict, strict=True):
model_need_dict = {k: v for k, v in pretrained_state_dict.items() if k in model_state_dict}
if not strict:
model_need_dict_free = {}
for key, item in model_need_dict.items():
if item.size() == model_state_dict[key].size():
model_need_dict_free[key] = item
model_need_dict = model_need_dict_free
model_state_dict.update(model_need_dict)
def median_ci(data, confidence=0.95):
data1 = sorted(data)
n = len(data1)
ll = 0.5 * n - 0.98 * math.sqrt(n)
ul = 1 + 0.5 * n + 0.98 * math.sqrt(n)
low = data1[math.ceil(ll) - 1]
up = data1[math.floor(ul) - 1]
return low, up
def interval_judge(value, interval_list):
"""
Args:
interval_list: list of sub interval expressed by list: [[a,b], [c,d]....]
Returns:
True if value in any sub interval
"""
if not interval_list:
return False
return any(list(map(lambda interval: interval[1] >= value >= interval[0], interval_list)))
def dict2str(in_dict, out_prefix=""):
out = out_prefix
for k, v in in_dict.items():
out += f'{k}: {v} '
return out
def print_something_first(func):
def wrapper_func(*args, **kwargs):
print(f"Calling: {func.__name__}")
re = func(*args, **kwargs)
return re
return wrapper_func
def has_or_init_wrapper(func):
def wrapper_func(self, *args, **kwargs):
attr_name = func.__name__[5:]
if not hasattr(self, attr_name) or self.__getattribute__(attr_name) is None:
return func(self, *args, **kwargs)
else:
return self.__getattribute__(attr_name)
return wrapper_func