Rad_Summarizer / app.py
Mbilal755's picture
Update app.py
ef67cf9
raw
history blame
789 Bytes
import gradio as gr
import json
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(repo_id="Mbilal755/Radiology_Bart", filename="tf_model.h5")
# Load model directly
import tensorflow as tf
model = tf.keras.models.load_model(model_path)
# Load tokenizer
tokenizer_path = hf_hub_download(repo_id="Mbilal755/Radiology_Bart", filename="tokenizer.json")
with open(tokenizer_path) as f:
tokenizer_data = json.load(f)
tokenizer = tokenizer_data["tokenizer"]
def summarize(text):
inputs = tokenizer.encode(text)
# Run model inference
summary_ids = model.generate(inputs)
summary = tokenizer.decode(summary_ids)
return summary
iface = gr.Interface(fn=summarize, inputs="text", outputs="text")
if __name__ == "__main__":
iface.launch(share=True)