|
import gradio as gr |
|
import time |
|
import requests |
|
import json |
|
import os |
|
from urllib3.util.retry import Retry |
|
from requests.adapters import HTTPAdapter |
|
|
|
API_URL = os.getenv("API_URL") |
|
API_KEY = os.getenv("API_KEY") |
|
|
|
print(f"API_URL: {API_URL}") |
|
print(f"API_KEY: {API_KEY}") |
|
|
|
url = f"{API_URL}/v1/chat/completions" |
|
|
|
|
|
headers = { |
|
"accept": "application/json", |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {API_KEY}", |
|
} |
|
|
|
|
|
def is_valid_json(data): |
|
try: |
|
parsed_data = json.loads(data) |
|
return True, parsed_data |
|
except ValueError as e: |
|
return False, str(e) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
markup = gr.Markdown( |
|
""" |
|
# Mistral 7B Instruct v0.2 |
|
This is a demo of the Mistral 7B Instruct quantized model in GGUF (Q2) hosted on K8s cluster. |
|
|
|
The original models can be found [MaziyarPanahi/Mistral-7B-Instruct-v0.2-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.2-GGUF)""" |
|
) |
|
chatbot = gr.Chatbot(height=500) |
|
msg = gr.Textbox(lines=1, label="User Message") |
|
clear = gr.Button("Clear") |
|
with gr.Row(): |
|
|
|
with gr.Column(scale=2): |
|
system_prompt_input = gr.Textbox( |
|
label="System Prompt", |
|
placeholder="Type system prompt here...", |
|
value="You are a helpful assistant.", |
|
) |
|
temperature_input = gr.Slider( |
|
label="Temperature", minimum=0.0, maximum=1.0, value=0.9, step=0.01 |
|
) |
|
max_new_tokens_input = gr.Slider( |
|
label="Max New Tokens", minimum=0, maximum=1024, value=256, step=1 |
|
) |
|
|
|
with gr.Column(scale=2): |
|
top_p_input = gr.Slider( |
|
label="Top P", minimum=0.0, maximum=1.0, value=0.95, step=0.01 |
|
) |
|
top_k_input = gr.Slider( |
|
label="Top K", minimum=1, maximum=100, value=50, step=1 |
|
) |
|
repetition_penalty_input = gr.Slider( |
|
label="Repetition Penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
value=1.1, |
|
step=0.01, |
|
) |
|
|
|
def update_globals( |
|
system_prompt, temperature, max_new_tokens, top_p, top_k, repetition_penalty |
|
): |
|
global global_system_prompt, global_temperature, global_max_new_tokens, global_top_p, global_repetition_penalty, global_top_k |
|
global_system_prompt = system_prompt |
|
global_temperature = temperature |
|
global_max_new_tokens = max_new_tokens |
|
global_top_p = top_p |
|
global_top_k = top_k |
|
global_repetition_penalty = repetition_penalty |
|
|
|
def user(user_message, history): |
|
return "", history + [[user_message, None]] |
|
|
|
def bot( |
|
history, |
|
system_prompt, |
|
temperature, |
|
max_new_tokens, |
|
top_p, |
|
top_k, |
|
repetition_penalty, |
|
): |
|
print(f"History in bot: {history}") |
|
print(f"System Prompt: {system_prompt}") |
|
print(f"Temperature: {temperature}") |
|
print(f"Max New Tokens: {max_new_tokens}") |
|
print(f"Top P: {top_p}") |
|
print(f"Top K: {top_k}") |
|
print(f"Repetition Penalty: {repetition_penalty}") |
|
|
|
history_messages = [{"content": h[0], "role": "user"} for h in history if h[0]] |
|
history[-1][1] = "" |
|
sys_msg = [ |
|
{ |
|
"content": ( |
|
system_prompt if system_prompt else "You are a helpful assistant." |
|
), |
|
"role": "system", |
|
} |
|
] |
|
history_messages = sys_msg + history_messages |
|
print(history_messages) |
|
|
|
|
|
session = requests.Session() |
|
|
|
|
|
retries = Retry( |
|
total=5, |
|
backoff_factor=1, |
|
status_forcelist=[ |
|
500, |
|
502, |
|
503, |
|
504, |
|
], |
|
method_whitelist=[ |
|
"HEAD", |
|
"GET", |
|
"OPTIONS", |
|
"POST", |
|
], |
|
) |
|
data = { |
|
"messages": history_messages, |
|
"stream": True, |
|
"temprature": temperature, |
|
"top_k": top_k, |
|
"top_p": top_p, |
|
"seed": 42, |
|
"repeat_penalty": repetition_penalty, |
|
"chat_format": "mistral-instruct", |
|
"max_tokens": max_new_tokens, |
|
|
|
|
|
|
|
} |
|
|
|
|
|
session.mount("http://", HTTPAdapter(max_retries=retries)) |
|
|
|
|
|
try: |
|
response = session.post( |
|
url, |
|
headers=headers, |
|
data=json.dumps(data), |
|
stream=True, |
|
timeout=(10, 30), |
|
) |
|
|
|
for line in response.iter_lines(): |
|
if line: |
|
for line in response.iter_lines(): |
|
|
|
if line: |
|
data = line.decode("utf-8").lstrip("data: ") |
|
|
|
valid_check = is_valid_json(data) |
|
if valid_check[0]: |
|
try: |
|
|
|
|
|
json_data = valid_check[1] |
|
|
|
delta_content = ( |
|
json_data.get("choices", [{}])[0] |
|
.get("delta", {}) |
|
.get("content", "") |
|
) |
|
|
|
if delta_content: |
|
history[-1][1] += delta_content |
|
time.sleep(0.05) |
|
yield history |
|
except json.JSONDecodeError as e: |
|
print(f"Error decoding JSON: {e} date: {data}") |
|
except requests.exceptions.RequestException as e: |
|
print(f"An error occurred: {e}") |
|
|
|
msg.submit( |
|
user, [msg, chatbot], [msg, chatbot], queue=True, concurrency_limit=10 |
|
).then( |
|
bot, |
|
inputs=[ |
|
chatbot, |
|
system_prompt_input, |
|
temperature_input, |
|
max_new_tokens_input, |
|
top_p_input, |
|
top_k_input, |
|
repetition_penalty_input, |
|
], |
|
outputs=chatbot, |
|
) |
|
|
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
|
|
demo.queue(default_concurrency_limit=20, max_size=20, api_open=False) |
|
if __name__ == "__main__": |
|
demo.launch(show_api=False, share=False) |
|
|