dreamgaussian2 / app.py
jiawi-ren
init
7b6e4c3
raw
history blame
7.65 kB
import gradio as gr
import os
from PIL import Image
import subprocess
os.system('pip install -e ./simple-knn')
os.system('pip install -e ./diff-gaussian-rasterization')
# check if there is a picture uploaded or selected
def check_img_input(control_image):
if control_image is None:
raise gr.Error("Please select or upload an input image")
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, elevation_slider: float):
if not os.path.exists('tmp_data'):
os.makedirs('tmp_data')
if preprocess_chk:
# save image to a designated path
image_block.save('tmp_data/tmp.png')
# preprocess image
subprocess.run([f'python process.py tmp_data/tmp.png'], shell=True)
else:
image_block.save('tmp_data/tmp_rgba.png')
# stage 1
subprocess.run([
f'python main.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
shell=True)
return f'logs/tmp_mesh.glb'
def optimize_stage_2(elevation_slider: float):
# stage 2
subprocess.run([
f'python main2.py --config configs/image.yaml input=tmp_data/tmp_rgba.png save_path=tmp mesh_format=glb elevation={elevation_slider} force_cuda_rast=True'],
shell=True)
return f'logs/tmp.glb'
if __name__ == "__main__":
_TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a>
</div>
We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation.
'''
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Generate 3D**."
# load images in 'data' folder as examples
example_folder = os.path.join(os.path.dirname(__file__), 'data')
example_fns = os.listdir(example_folder)
example_fns.sort()
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
# Compose demo layout & data flow
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
# Image-to-3D
with gr.Row(variant='panel'):
with gr.Column(scale=5):
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None)
elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
gr.Markdown(
"default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30")
preprocess_chk = gr.Checkbox(True,
label='Preprocess image automatically (remove background and recenter object)')
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block],
outputs=[image_block],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=40
)
img_run_btn = gr.Button("Generate 3D")
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)
with gr.Column(scale=5):
obj3d_stage1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Stage 1)")
obj3d = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model (Final)")
# if there is an input image, continue with inference
# else display an error message
img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1,
inputs=[image_block,
preprocess_chk,
elevation_slider],
outputs=[
obj3d_stage1]).success(
optimize_stage_2, inputs=[elevation_slider], outputs=[obj3d])
demo.launch(enable_queue=True)