import gradio as gr | |
from transformers import pipeline | |
# Load your image captioning model from Hugging Face | |
model_name = "Mayada/AIC-transformer" # Update this with your model path | |
captioner = pipeline("image-to-text", model=model_name) | |
# Define a function to generate a caption from an image | |
def generate_caption(image): | |
result = captioner(image) | |
return result[0]['generated_text'] | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=generate_caption, # Function to process image and return caption | |
inputs=gr.inputs.Image(type="pil"), # Accept image input | |
outputs="text", # Output the caption as text | |
title="AIC-transformer-2023", # Title for your interface | |
description="Description", # Description for users | |
) | |
# Launch the Gradio interface | |
interface.launch() | |