subtify / separe_vocals.py
Maximofn's picture
Into separe_vocals.py set modelscope and speechbrain methods
1215bc9
raw
history blame
5.98 kB
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import soundfile as sf
import numpy as np
import os
import torch
import argparse
import speechbrain as sb
from speechbrain.dataio.dataio import read_audio
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio
SAMPLE_RATE = 8000
MODEL_SPEECHBRAIN = "SPEECHBRAIN"
MODEL_MODELSCOPE = "MODELSCOPE"
# MODEL = MODEL_SPEECHBRAIN
MODEL = MODEL_MODELSCOPE
def get_sample_rate(audio_file_path):
"""
Get the sample rate of an audio file
Args:
audio_file_path (str): Path to the audio file
Returns:
int: Sample rate of the audio file
"""
_, sample_rate = sf.read(audio_file_path, always_2d=True)
return sample_rate
def change_sample_rate(input_audio_file_path, output_audio_file_path, sample_rate):
"""
Change the sample rate of an audio file
Args:
input_audio_file_path (str): Path to the input audio file
output_audio_file_path (str): Path to the output audio file
sample_rate (int): Sample rate to change to
"""
os.system(f'ffmpeg -i {input_audio_file_path} -ar {sample_rate} -loglevel error {output_audio_file_path}')
def audio_is_stereo(audio_file_path):
"""
Check if an audio file is stereo
Args:
audio_file_path (str): Path to the audio file
Returns:
bool: True if the audio file is stereo, False otherwise
"""
audio, _ = sf.read(audio_file_path, always_2d=True)
return audio.shape[1] == 2
def set_mono(input_audio_file_path, output_audio_file_path):
"""
Set an audio file to mono
Args:
input_audio_file_path (str): Path to the input audio file
output_audio_file_path (str): Path to the output audio file
"""
os.system(f'ffmpeg -i {input_audio_file_path} -ac 1 -loglevel error {output_audio_file_path}')
def write_number_speakers_txt(output_folder, num_speakers):
"""
Write the number of speakers in a txt file
Args:
output_folder (str): Path to the output folder
num_speakers (int): Number of speakers
"""
with open(f"{output_folder}/speakers.txt", 'w') as f:
f.write(str(num_speakers))
def separate_vocals_speechbrain(input_audio_file_path, output_folder, model):
file, _ = input_audio_file_path.split(".")
_, file = file.split("/")
est_sources = model.separate_file(path=input_audio_file_path)
num_vocals = est_sources.shape[2]
speakers = 0
for i in range(num_vocals):
save_file = f'{output_folder}/{file}_speaker{i:003d}.wav'
torchaudio.save(save_file, est_sources[:, :, i].detach().cpu(), SAMPLE_RATE)
speakers += 1
# Write number of speakers in a txt file
write_number_speakers_txt(output_folder, speakers)
def separate_vocals_modelscope(input_audio_file_path, output_folder, model):
# Get input and output names
input_name, _ = input_audio_file_path.split(".")
input_folder, input_name = input_name.split("/")
# Set input files with 8k sample rate and mono
input_8k = f"{input_folder}/{input_name}_8k.wav"
input_8k_mono = f"{input_folder}/{input_name}_8k_mono.wav"
# Check if input has 8k sample rate, if not, change it
sr = get_sample_rate(input_audio_file_path)
if sr != SAMPLE_RATE:
change_sample_rate(input, input_8k, SAMPLE_RATE)
remove_8k = True
else:
input_8k = input
remove_8k = False
# Check if input is stereo, if yes, set it to mono
if audio_is_stereo(input_8k):
set_mono(input_8k, input_8k_mono)
remove_mono = True
else:
input_8k_mono = input_8k
remove_mono = False
# Separate audio voices
result = model(input_8k_mono)
# Save separated audio voices
speakers = 0
for i, signal in enumerate(result['output_pcm_list']):
save_file = f'{output_folder}/{input_name}_speaker{i:003d}.wav'
sf.write(save_file, np.frombuffer(signal, dtype=np.int16), SAMPLE_RATE)
speakers += 1
# Write number of speakers in a txt file
write_number_speakers_txt(output_folder, speakers)
# Remove temporary files
if remove_8k:
os.remove(input_8k)
if remove_mono:
os.remove(input_8k_mono)
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description='Separate speech from a stereo audio file')
argparser.add_argument('inputs_file', type=str, help='File with the list of inputs')
argparser.add_argument('device', type=str, help='Device to use for separation')
args = argparser.parse_args()
device = args.device
if MODEL == MODEL_SPEECHBRAIN:
if device == 'cpu':
model = separator.from_hparams(source="speechbrain/sepformer-whamr", savedir='pretrained_models/sepformer-whamr')
elif 'cuda' in device:
model = separator.from_hparams(source="speechbrain/sepformer-whamr", savedir='pretrained_models/sepformer-whamr', run_opts={"device":f"{device}"})
elif device == 'gpu':
model = separator.from_hparams(source="speechbrain/sepformer-whamr", savedir='pretrained_models/sepformer-whamr', run_opts={"device":"cuda"})
else:
raise ValueError(f"Device {device} is not valid")
elif MODEL == MODEL_MODELSCOPE:
separation = pipeline(Tasks.speech_separation, model='damo/speech_mossformer_separation_temporal_8k', device=device)
else:
raise ValueError(f"Model {MODEL} is not valid")
# Read files from input file
with open(args.inputs_file, 'r') as f:
inputs = f.read().splitlines()
output_folder = "vocals"
for input in inputs:
if MODEL == MODEL_SPEECHBRAIN:
separate_vocals_speechbrain(input, output_folder, model)
elif MODEL == MODEL_MODELSCOPE:
separate_vocals_modelscope(input, output_folder, separation)
else:
raise ValueError(f"Model {MODEL} is not valid")