Maximofn commited on
Commit
b6bfa2b
·
1 Parent(s): 005eeaf

Switch from InferenceClient to local model loading with SmolLM2-1.7B-Instruct

Browse files

- Replace HuggingFace Inference API with local model loading
- Use transformers library to load SmolLM2-1.7B-Instruct model
- Update prompt formatting for local model generation
- Modify response generation to work with local model
- Update requirements.txt with necessary dependencies

Files changed (2) hide show
  1. app.py +36 -20
  2. requirements.txt +5 -1
app.py CHANGED
@@ -1,11 +1,19 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,29 +23,37 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
 
20
  for val in history:
21
  if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
 
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
 
 
 
 
 
 
41
 
42
 
43
  """
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
  """
6
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
  """
 
8
 
9
+ # Cargar el modelo y el tokenizer
10
+ model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
+ model = AutoModelForCausalLM.from_pretrained(
13
+ model_name,
14
+ torch_dtype=torch.float16,
15
+ device_map="auto"
16
+ )
17
 
18
  def respond(
19
  message,
 
23
  temperature,
24
  top_p,
25
  ):
26
+ # Construir el prompt con el formato correcto
27
+ prompt = f"<|system|>\n{system_message}</s>\n"
28
+
29
  for val in history:
30
  if val[0]:
31
+ prompt += f"<|user|>\n{val[0]}</s>\n"
32
  if val[1]:
33
+ prompt += f"<|assistant|>\n{val[1]}</s>\n"
34
+
35
+ prompt += f"<|user|>\n{message}</s>\n<|assistant|>\n"
36
+
37
+ # Tokenizar el prompt
38
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
39
+
40
+ # Generar la respuesta
41
+ outputs = model.generate(
42
+ **inputs,
43
+ max_new_tokens=max_tokens,
44
  temperature=temperature,
45
  top_p=top_p,
46
+ do_sample=True,
47
+ pad_token_id=tokenizer.eos_token_id
48
+ )
49
+
50
+ # Decodificar la respuesta
51
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
52
+
53
+ # Extraer solo la parte de la respuesta del asistente
54
+ response = response.split("<|assistant|>\n")[-1].strip()
55
+
56
+ yield response
57
 
58
 
59
  """
requirements.txt CHANGED
@@ -1 +1,5 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ gradio>=4.0.0
3
+ transformers>=4.36.0
4
+ torch>=2.0.0
5
+ accelerate>=0.25.0