Spaces:
Sleeping
Sleeping
Switch from InferenceClient to local model loading with SmolLM2-1.7B-Instruct
Browse files- Replace HuggingFace Inference API with local model loading
- Use transformers library to load SmolLM2-1.7B-Instruct model
- Update prompt formatting for local model generation
- Modify response generation to work with local model
- Update requirements.txt with necessary dependencies
- app.py +36 -20
- requirements.txt +5 -1
app.py
CHANGED
|
@@ -1,11 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
| 3 |
|
| 4 |
"""
|
| 5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def respond(
|
| 11 |
message,
|
|
@@ -15,29 +23,37 @@ def respond(
|
|
| 15 |
temperature,
|
| 16 |
top_p,
|
| 17 |
):
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 20 |
for val in history:
|
| 21 |
if val[0]:
|
| 22 |
-
|
| 23 |
if val[1]:
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
"""
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
"""
|
| 6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 7 |
"""
|
|
|
|
| 8 |
|
| 9 |
+
# Cargar el modelo y el tokenizer
|
| 10 |
+
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
model_name,
|
| 14 |
+
torch_dtype=torch.float16,
|
| 15 |
+
device_map="auto"
|
| 16 |
+
)
|
| 17 |
|
| 18 |
def respond(
|
| 19 |
message,
|
|
|
|
| 23 |
temperature,
|
| 24 |
top_p,
|
| 25 |
):
|
| 26 |
+
# Construir el prompt con el formato correcto
|
| 27 |
+
prompt = f"<|system|>\n{system_message}</s>\n"
|
| 28 |
+
|
| 29 |
for val in history:
|
| 30 |
if val[0]:
|
| 31 |
+
prompt += f"<|user|>\n{val[0]}</s>\n"
|
| 32 |
if val[1]:
|
| 33 |
+
prompt += f"<|assistant|>\n{val[1]}</s>\n"
|
| 34 |
+
|
| 35 |
+
prompt += f"<|user|>\n{message}</s>\n<|assistant|>\n"
|
| 36 |
+
|
| 37 |
+
# Tokenizar el prompt
|
| 38 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 39 |
+
|
| 40 |
+
# Generar la respuesta
|
| 41 |
+
outputs = model.generate(
|
| 42 |
+
**inputs,
|
| 43 |
+
max_new_tokens=max_tokens,
|
| 44 |
temperature=temperature,
|
| 45 |
top_p=top_p,
|
| 46 |
+
do_sample=True,
|
| 47 |
+
pad_token_id=tokenizer.eos_token_id
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Decodificar la respuesta
|
| 51 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 52 |
+
|
| 53 |
+
# Extraer solo la parte de la respuesta del asistente
|
| 54 |
+
response = response.split("<|assistant|>\n")[-1].strip()
|
| 55 |
+
|
| 56 |
+
yield response
|
| 57 |
|
| 58 |
|
| 59 |
"""
|
requirements.txt
CHANGED
|
@@ -1 +1,5 @@
|
|
| 1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.25.2
|
| 2 |
+
gradio>=4.0.0
|
| 3 |
+
transformers>=4.36.0
|
| 4 |
+
torch>=2.0.0
|
| 5 |
+
accelerate>=0.25.0
|