Whitebox-Style-Transfer-Editing / pages /3_πŸ§‘_Predict_Portrait_xDoG.py
Max Reimann
change png to jpg
c39f027
raw
history blame
6.98 kB
import argparse
import base64
from io import BytesIO
from pathlib import Path
import os
import shutil
import sys
import time
import numpy as np
import torch.nn.functional as F
import torch
import streamlit as st
from st_click_detector import click_detector
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from torchvision.transforms import ToPILImage, Compose, ToTensor, Normalize
from PIL import Image
from huggingface_hub import hf_hub_download
PACKAGE_PARENT = '..'
WISE_DIR = '../wise/'
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, WISE_DIR)))
from local_ppn.options.test_options import TestOptions
from local_ppn.models import create_model
class CustomOpts(TestOptions):
def remove_options(self, parser, options):
for option in options:
for action in parser._actions:
print(action)
if vars(action)['option_strings'][0] == option:
parser._handle_conflict_resolve(None,[(option,action)])
break
def initialize(self, parser):
parser = super(CustomOpts, self).initialize(parser)
self.remove_options(parser, ["--dataroot"])
return parser
def print_options(self, opt):
pass
def add_predefined_images():
images = []
for f in os.listdir(os.path.join(SCRIPT_DIR, PACKAGE_PARENT, 'images','apdrawing')):
if not f.endswith('.jpg'):
continue
AB = Image.open(os.path.join(SCRIPT_DIR, PACKAGE_PARENT, 'images','apdrawing', f)).convert('RGB')
# split AB image into A and B
w, h = AB.size
w2 = int(w / 2)
A = AB.crop((0, 0, w2, h))
B = AB.crop((w2, 0, w, h))
images.append(A)
return images
@st.experimental_singleton
def make_model(_unused=None):
model_path = hf_hub_download(repo_id="MaxReimann/WISE-APDrawing-XDoG", filename="apdrawing_xdog_ppn_conv.pth")
os.makedirs(os.path.join(SCRIPT_DIR, PACKAGE_PARENT, "trained_models", "ours_apdrawing"), exist_ok=True)
shutil.copy2(model_path, os.path.join(SCRIPT_DIR, PACKAGE_PARENT, "trained_models", "ours_apdrawing", "latest_net_G.pth"))
opt = CustomOpts().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 0
opt.batch_size = 1 # test code only supports batch_size = 1
# opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
opt.dataroot ="null"
opt.direction = "BtoA"
opt.model = "pix2pix"
opt.ppnG = "our_xdog"
opt.name = "ours_apdrawing"
opt.netG = "resnet_9blocks"
opt.no_dropout = True
opt.norm = "batch"
opt.load_size = 576
opt.crop_size = 512
opt.eval = False
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
if opt.eval:
model.eval()
return model, opt
def predict(image):
model, opt = make_model()
t = Compose([
ToTensor(),
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
inp = image.resize((opt.crop_size, opt.crop_size), resample=Image.BICUBIC)
inp = t(inp).unsqueeze(0).cuda()
x = model.netG.module.ppn_part_forward(inp)
output = model.netG.module.conv_part_forward(x)
out_img = ToPILImage()(output.squeeze(0))
return out_img
st.title("xDoG+CNN Portrait Drawing ")
images = add_predefined_images()
html_code = '<div class="column" style="display: flex; flex-wrap: wrap; padding: 0 4px;">'
for i, image in enumerate(images):
buffered = BytesIO()
image.save(buffered, format="JPEG")
encoded = base64.b64encode(buffered.getvalue()).decode()
html_code += f"<a href='#' id='{i}' style='padding: 0px 5px'><img height='120px' style='margin-top: 8px;' src='data:image/jpeg;base64,{encoded}'></a>"
html_code += "</div>"
clicked = click_detector(html_code)
uploaded_im = st.file_uploader(f"OR: Load portrait:", type=["png", "jpg"], )
if uploaded_im is not None:
img = Image.open(uploaded_im)
img = img.convert('RGB')
buffered = BytesIO()
img.save(buffered, format="JPEG")
clicked_img = None
if clicked:
clicked_img = images[int(clicked)]
sel_img = img if uploaded_im is not None else clicked_img
if sel_img:
result_container = st.container()
coll1, coll2 = result_container.columns([3,2])
coll1.header("Result")
coll2.header("Global Edits")
model, opt = make_model()
t = Compose([
ToTensor(),
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
inp = sel_img.resize((opt.crop_size, opt.crop_size), resample=Image.BICUBIC)
inp = t(inp).unsqueeze(0).cuda()
# vp = model.netG.module.ppn_part_forward(inp)
vp = model.netG.module.predict_parameters(inp)
inp = (inp * 0.5) + 0.5
effect = model.netG.module.apply_visual_effect.effect
with coll2:
# ("blackness", "contour", "strokeWidth", "details", "saturation", "contrast", "brightness")
show_params_names = ["strokeWidth", "blackness", "contours"]
display_means = []
params_mapping = {"strokeWidth": ['strokeWidth'], 'blackness': ["blackness"], "contours": [ "details", "contour"]}
def create_slider(name):
params = params_mapping[name] if name in params_mapping else [name]
means = [torch.mean(vp[:, effect.vpd.name2idx[n]]).item() for n in params]
display_mean = float(np.average(means) + 0.5)
display_means.append(display_mean)
slider = st.slider(f"Mean {name}: ", 0.0, 1.0, value=display_mean, step=0.05)
for i, param_name in enumerate(params):
vp[:, effect.vpd.name2idx[param_name]] += slider - (means[i]+ 0.5)
# vp.clamp_(-0.5, 0.5)
# pass
for name in show_params_names:
create_slider(name)
x = model.netG.module.apply_visual_effect(inp, vp)
x = (x - 0.5) / 0.5
only_x_dog = st.checkbox('only xdog', value=False, help='if checked, use only ppn+xdog, else use ppn+xdog+post-processing cnn')
if only_x_dog:
output = x[:,0].repeat(1,3,1,1)
print('shape output', output.shape)
else:
output = model.netG.module.conv_part_forward(x)
out_img = ToPILImage()(output.squeeze(0))
output = out_img.resize((320,320), resample=Image.BICUBIC)
with coll1:
st.image(output)