Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -5,23 +5,9 @@ Original file is located at | |
| 5 | 
             
                https://colab.research.google.com/drive/1omNn2hrbDL_s1qwCOr7ViaIjrRW61YDt
         | 
| 6 | 
             
            """
         | 
| 7 |  | 
| 8 | 
            -
            # Commented out IPython magic to ensure Python compatibility.
         | 
| 9 | 
            -
            # %%capture
         | 
| 10 | 
            -
            # !pip install gradio
         | 
| 11 | 
            -
            # # !pip install gradio==3.50.2
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            # Commented out IPython magic to ensure Python compatibility.
         | 
| 14 | 
            -
            # %%capture
         | 
| 15 | 
            -
            #
         | 
| 16 | 
            -
            # !pip install cmocean
         | 
| 17 | 
            -
            # !pip install mesa
         | 
| 18 | 
            -
            #
         | 
| 19 | 
            -
            # !pip install opinionated
         | 
| 20 | 
            -
             | 
| 21 | 
             
            import random
         | 
| 22 | 
             
            import pandas as pd
         | 
| 23 | 
             
            from mesa import Agent, Model
         | 
| 24 | 
            -
            from mesa.space import MultiGrid
         | 
| 25 | 
             
            import networkx as nx
         | 
| 26 | 
             
            from mesa.time import RandomActivation
         | 
| 27 | 
             
            from mesa.datacollection import DataCollector
         | 
| @@ -29,99 +15,61 @@ import numpy as np | |
| 29 | 
             
            import seaborn as sns
         | 
| 30 | 
             
            import matplotlib.pyplot as plt
         | 
| 31 | 
             
            import matplotlib as mpl
         | 
| 32 | 
            -
             | 
| 33 | 
             
            import cmocean
         | 
| 34 | 
            -
             | 
| 35 | 
             
            import tqdm
         | 
| 36 | 
            -
             | 
| 37 | 
             
            import scipy as sp
         | 
| 38 | 
            -
             | 
| 39 | 
            -
            # from compress_pickle import dump, load
         | 
| 40 | 
            -
             | 
| 41 | 
             
            from scipy.stats import beta
         | 
| 42 | 
            -
             | 
| 43 | 
            -
            # # %%capture
         | 
| 44 | 
            -
            # !pip install git+https://github.com/MNoichl/opinionated.git#egg=opinionated
         | 
| 45 | 
            -
            # # import opinionated
         | 
| 46 | 
            -
             | 
| 47 | 
             
            import opinionated
         | 
| 48 | 
            -
            import  | 
| 49 |  | 
| 50 | 
             
            plt.style.use("opinionated_rc")
         | 
| 51 | 
            -
            # from opinionated.core import download_googlefont
         | 
| 52 | 
            -
            # download_googlefont('Quicksand', add_to_cache=True)
         | 
| 53 | 
            -
            # plt.rc('font', family='Quicksand')
         | 
| 54 | 
            -
             | 
| 55 | 
            -
            experiences = {
         | 
| 56 | 
            -
                'dissident_experiences': [1, 0, 0],
         | 
| 57 | 
            -
                'supporter_experiences': [1, 1, 1],
         | 
| 58 | 
            -
            }
         | 
| 59 |  | 
|  | |
|  | |
|  | |
| 60 | 
             
            def apply_half_life_decay(data_list, half_life, decay_factors=None):
         | 
| 61 | 
             
                steps = len(data_list)
         | 
| 62 | 
             
                if decay_factors is None or len(decay_factors) < steps:
         | 
| 63 | 
             
                    decay_factors = [0.5 ** (i / half_life) for i in range(steps)]
         | 
| 64 | 
            -
                 | 
| 65 | 
            -
                return decayed_list
         | 
| 66 | 
            -
             | 
| 67 | 
            -
            half_life = 20
         | 
| 68 | 
            -
            decay_factors = [0.5 ** (i / half_life) for i in range(200)]
         | 
| 69 |  | 
| 70 | 
             
            def get_beta_mean_from_experience_dict(experiences, half_life=20, decay_factors=None):
         | 
| 71 | 
             
                eta = 1e-10
         | 
| 72 | 
            -
                 | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
                )
         | 
| 76 |  | 
| 77 | 
             
            def get_beta_sample_from_experience_dict(experiences, half_life=20, decay_factors=None):
         | 
| 78 | 
             
                eta = 1e-10
         | 
| 79 | 
            -
                 | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
                    size=1
         | 
| 83 | 
            -
                )[0]
         | 
| 84 | 
            -
             | 
| 85 | 
            -
            # print(get_beta_mean_from_experience_dict(experiences, half_life, decay_factors))
         | 
| 86 | 
            -
            # print(get_beta_sample_from_experience_dict(experiences, half_life))
         | 
| 87 | 
            -
             | 
| 88 | 
            -
            #@title Load network functionality
         | 
| 89 |  | 
|  | |
|  | |
|  | |
| 90 | 
             
            def generate_community_points(num_communities, total_nodes, powerlaw_exponent=2.0, sigma=0.05, plot=False):
         | 
| 91 | 
            -
                """
         | 
| 92 | 
            -
                Generate 2D points grouped into communities (Gaussian around random centers).
         | 
| 93 | 
            -
                """
         | 
| 94 | 
             
                sequence = nx.utils.powerlaw_sequence(num_communities, powerlaw_exponent)
         | 
| 95 | 
             
                probabilities = sequence / np.sum(sequence)
         | 
| 96 | 
            -
             | 
| 97 | 
             
                community_assignments = np.random.choice(num_communities, size=total_nodes, p=probabilities)
         | 
| 98 | 
             
                community_sizes = np.bincount(community_assignments)
         | 
| 99 | 
             
                if len(community_sizes) < num_communities:
         | 
| 100 | 
             
                    community_sizes = np.pad(community_sizes, (0, num_communities - len(community_sizes)), 'constant')
         | 
| 101 | 
            -
             | 
| 102 | 
            -
                points = []
         | 
| 103 | 
            -
                community_centers = []
         | 
| 104 | 
            -
             | 
| 105 | 
             
                for i in range(num_communities):
         | 
| 106 | 
             
                    center = np.random.rand(2)
         | 
| 107 | 
             
                    community_centers.append(center)
         | 
| 108 | 
             
                    community_points = np.random.normal(center, sigma, (community_sizes[i], 2))
         | 
| 109 | 
             
                    points.append(community_points)
         | 
| 110 | 
            -
             | 
| 111 | 
             
                points = np.concatenate(points)
         | 
| 112 | 
            -
             | 
| 113 | 
             
                if plot:
         | 
| 114 | 
             
                    plt.figure(figsize=(8, 8))
         | 
| 115 | 
             
                    plt.scatter(points[:, 0], points[:, 1], alpha=0.5)
         | 
| 116 | 
             
                    sns.kdeplot(x=points[:, 0], y=points[:, 1], levels=5, color="k", linewidths=1)
         | 
| 117 | 
             
                    plt.show()
         | 
| 118 | 
            -
             | 
| 119 | 
             
                return points
         | 
| 120 |  | 
| 121 | 
             
            def graph_from_coordinates(coords, radius):
         | 
| 122 | 
            -
                """
         | 
| 123 | 
            -
                Create a random geometric graph from an array of coordinates.
         | 
| 124 | 
            -
                """
         | 
| 125 | 
             
                kdtree = sp.spatial.cKDTree(coords)
         | 
| 126 | 
             
                edge_indexes = kdtree.query_pairs(radius)
         | 
| 127 | 
             
                g = nx.Graph()
         | 
| @@ -129,96 +77,85 @@ def graph_from_coordinates(coords, radius): | |
| 129 | 
             
                g.add_edges_from(edge_indexes)
         | 
| 130 | 
             
                return g
         | 
| 131 |  | 
| 132 | 
            -
            def plot_graph(graph, positions):
         | 
| 133 | 
            -
                plt.figure(figsize=(8, 8))
         | 
| 134 | 
            -
                pos_dict = {i: positions[i] for i in range(len(positions))}
         | 
| 135 | 
            -
                nx.draw_networkx_nodes(graph, pos_dict, node_size=30, node_color="#1a2340", alpha=0.7)
         | 
| 136 | 
            -
                nx.draw_networkx_edges(graph, pos_dict, edge_color="grey", width=1, alpha=1)
         | 
| 137 | 
            -
                plt.show()
         | 
| 138 | 
            -
             | 
| 139 | 
             
            def ensure_neighbors(graph):
         | 
| 140 | 
            -
                """
         | 
| 141 | 
            -
                Ensure that all nodes have at least one neighbor.
         | 
| 142 | 
            -
                """
         | 
| 143 | 
             
                nodes = list(graph.nodes())
         | 
| 144 | 
             
                for node in nodes:
         | 
| 145 | 
            -
                    if  | 
| 146 | 
            -
                         | 
| 147 | 
            -
                        while  | 
| 148 | 
            -
                             | 
| 149 | 
            -
                        graph.add_edge(node,  | 
| 150 | 
             
                return graph
         | 
| 151 |  | 
| 152 | 
             
            def compute_homophily(G, attr_name='attr'):
         | 
| 153 | 
            -
                 | 
| 154 | 
            -
                 | 
| 155 | 
            -
                return  | 
| 156 |  | 
| 157 | 
             
            def assign_initial_attributes(G, ratio, attr_name='attr'):
         | 
| 158 | 
             
                nodes = list(G.nodes)
         | 
| 159 | 
             
                random.shuffle(nodes)
         | 
| 160 | 
            -
                 | 
| 161 | 
             
                for i, node in enumerate(nodes):
         | 
| 162 | 
            -
                    G.nodes[node][attr_name] = 0 if i <  | 
| 163 | 
             
                return G
         | 
| 164 |  | 
| 165 | 
             
            def distribute_attributes(G, target_homophily, seed=None, max_iter=10000, cooling_factor=0.9995, attr_name='attr'):
         | 
| 166 | 
             
                random.seed(seed)
         | 
| 167 | 
            -
                 | 
| 168 | 
             
                temp = 1.0
         | 
| 169 | 
            -
             | 
| 170 | 
            -
                for i in range(max_iter):
         | 
| 171 | 
             
                    nodes = list(G.nodes)
         | 
| 172 | 
             
                    random.shuffle(nodes)
         | 
| 173 | 
            -
                    for  | 
| 174 | 
            -
                        if G.nodes[ | 
| 175 | 
            -
                            G.nodes[ | 
| 176 | 
             
                            break
         | 
| 177 | 
            -
             | 
| 178 | 
            -
                     | 
| 179 | 
            -
                     | 
| 180 | 
            -
                     | 
| 181 | 
            -
             | 
| 182 | 
            -
             | 
| 183 | 
            -
                       (delta_homophily / temp < 700 and random.random() < np.exp(dir_factor * delta_homophily / temp)):
         | 
| 184 | 
            -
                        current_homophily = new_homophily
         | 
| 185 | 
             
                    else:
         | 
| 186 | 
            -
                        G.nodes[ | 
| 187 | 
            -
             | 
| 188 | 
             
                    temp *= cooling_factor
         | 
| 189 | 
            -
             | 
| 190 | 
             
                return G
         | 
| 191 |  | 
| 192 | 
             
            def reindex_graph_to_match_attributes(G1, G2, attr_name):
         | 
| 193 | 
            -
                 | 
| 194 | 
            -
                 | 
| 195 | 
            -
                mapping = { | 
| 196 | 
            -
                 | 
| 197 | 
            -
             | 
| 198 | 
            -
             | 
| 199 | 
            -
             | 
| 200 | 
            -
             | 
| 201 | 
             
            def compute_mean(model):
         | 
| 202 | 
            -
                 | 
| 203 | 
            -
                return np.mean(agent_estimations)
         | 
| 204 |  | 
| 205 | 
             
            def compute_median(model):
         | 
| 206 | 
            -
                 | 
| 207 | 
            -
                return np.median(agent_estimations)
         | 
| 208 |  | 
| 209 | 
             
            def compute_std(model):
         | 
| 210 | 
            -
                 | 
| 211 | 
            -
                return np.std(agent_estimations)
         | 
| 212 |  | 
|  | |
|  | |
|  | |
| 213 | 
             
            class PoliticalAgent(Agent):
         | 
| 214 | 
            -
                """An agent in the political model.
         | 
| 215 | 
            -
                Attributes:
         | 
| 216 | 
            -
                    estimation (float): current expectation of political change
         | 
| 217 | 
            -
                    dissident (bool): True if supports regime change
         | 
| 218 | 
            -
                """
         | 
| 219 | 
            -
             | 
| 220 | 
             
                def __init__(self, unique_id, model, dissident):
         | 
| 221 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 222 | 
             
                    self.experiences = {
         | 
| 223 | 
             
                        'dissident_experiences': [1],
         | 
| 224 | 
             
                        'supporter_experiences': [1],
         | 
| @@ -229,62 +166,65 @@ class PoliticalAgent(Agent): | |
| 229 | 
             
                    self.dissident = dissident
         | 
| 230 |  | 
| 231 | 
             
                def update_estimation(self, network_id):
         | 
| 232 | 
            -
                     | 
| 233 | 
            -
             | 
| 234 | 
            -
                    potential_partners = [self.model.id2agent[n] for n in self.model.networks[network_id]['network'].neighbors(self.unique_id)]
         | 
| 235 |  | 
| 236 | 
            -
                    current_estimate = get_beta_mean_from_experience_dict( | 
|  | |
| 237 | 
             
                    self.estimations.append(current_estimate)
         | 
| 238 | 
             
                    self.estimation = current_estimate
         | 
| 239 | 
            -
             | 
|  | |
|  | |
| 240 | 
             
                    self.experiments.append(current_experiment)
         | 
| 241 |  | 
| 242 | 
            -
                    if  | 
| 243 | 
            -
                         | 
| 244 | 
            -
                        if self.model.networks[network_id]['type'] == 'physical':
         | 
| 245 | 
            -
                            if current_experiment >= self.model.threshold:
         | 
| 246 | 
            -
                                if partner.dissident:
         | 
| 247 | 
            -
                                    self.experiences['dissident_experiences'].append(1)
         | 
| 248 | 
            -
                                    self.experiences['supporter_experiences'].append(0)
         | 
| 249 | 
            -
                                else:
         | 
| 250 | 
            -
                                    self.experiences['dissident_experiences'].append(0)
         | 
| 251 | 
            -
                                    self.experiences['supporter_experiences'].append(1)
         | 
| 252 |  | 
| 253 | 
            -
             | 
| 254 | 
            -
             | 
| 255 | 
            -
                            else:
         | 
| 256 | 
            -
                                partner.experiences['dissident_experiences'].append(0)
         | 
| 257 | 
            -
                                partner.experiences['supporter_experiences'].append(1 * self.model.social_learning_factor)
         | 
| 258 |  | 
| 259 | 
            -
             | 
|  | |
| 260 | 
             
                            if partner.dissident:
         | 
| 261 | 
            -
                                self.experiences['dissident_experiences'].append(1 | 
| 262 | 
             
                                self.experiences['supporter_experiences'].append(0)
         | 
| 263 | 
             
                            else:
         | 
| 264 | 
             
                                self.experiences['dissident_experiences'].append(0)
         | 
| 265 | 
            -
                                self.experiences['supporter_experiences'].append(1 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 266 |  | 
| 267 | 
             
                def combine_estimations(self):
         | 
| 268 | 
            -
                    #  | 
| 269 | 
             
                    if not hasattr(self, "current_estimations"):
         | 
| 270 | 
             
                        return
         | 
| 271 | 
             
                    values = [list(d.values())[0] for d in self.current_estimations]
         | 
| 272 | 
             
                    if len(values) > 0:
         | 
| 273 | 
            -
                         | 
| 274 | 
            -
                        if len( | 
| 275 | 
            -
                            self.estimation = np.mean( | 
| 276 |  | 
| 277 | 
             
                def step(self):
         | 
| 278 | 
             
                    if not hasattr(self, 'current_estimations'):
         | 
| 279 | 
             
                        self.current_estimations = []
         | 
| 280 | 
            -
                    for  | 
| 281 | 
            -
                        self.update_estimation( | 
| 282 | 
             
                    self.combine_estimations()
         | 
| 283 | 
             
                    del self.current_estimations
         | 
| 284 |  | 
| 285 | 
             
            class PoliticalModel(Model):
         | 
| 286 | 
            -
                """A model of a political system with multiple interacting agents."""
         | 
| 287 | 
            -
             | 
| 288 | 
             
                def __init__(
         | 
| 289 | 
             
                    self,
         | 
| 290 | 
             
                    n_agents,
         | 
| @@ -302,7 +242,7 @@ class PoliticalModel(Model): | |
| 302 | 
             
                    intervention_list=None,
         | 
| 303 | 
             
                    rng_seed=None,
         | 
| 304 | 
             
                ):
         | 
| 305 | 
            -
                    #  | 
| 306 | 
             
                    try:
         | 
| 307 | 
             
                        super().__init__(rng_seed=rng_seed)  # Mesa >= 3.0
         | 
| 308 | 
             
                    except TypeError:
         | 
| @@ -322,10 +262,10 @@ class PoliticalModel(Model): | |
| 322 | 
             
                    self.print_frequency = print_frequency
         | 
| 323 | 
             
                    self.early_stopping_steps = early_stopping_steps
         | 
| 324 | 
             
                    self.early_stopping_range = early_stopping_range
         | 
|  | |
| 325 |  | 
| 326 | 
             
                    self.mean_estimations = []
         | 
| 327 | 
             
                    self.decay_factors = [0.5 ** (i / self.half_life) for i in range(500)]
         | 
| 328 | 
            -
             | 
| 329 | 
             
                    self.running = True
         | 
| 330 | 
             
                    self.share_regime_supporters = share_regime_supporters
         | 
| 331 |  | 
| @@ -335,9 +275,7 @@ class PoliticalModel(Model): | |
| 335 | 
             
                    # Align attributes across networks and compute homophilies
         | 
| 336 | 
             
                    for i, this_network in enumerate(self.networks):
         | 
| 337 | 
             
                        self.networks[this_network]["network"] = assign_initial_attributes(
         | 
| 338 | 
            -
                            self.networks[this_network]["network"],
         | 
| 339 | 
            -
                            self.share_regime_supporters,
         | 
| 340 | 
            -
                            attr_name='dissident'
         | 
| 341 | 
             
                        )
         | 
| 342 | 
             
                        if 'homophily' in self.networks[this_network]:
         | 
| 343 | 
             
                            self.networks[this_network]["network"] = distribute_attributes(
         | 
| @@ -347,20 +285,17 @@ class PoliticalModel(Model): | |
| 347 | 
             
                                cooling_factor=0.995,
         | 
| 348 | 
             
                                attr_name='dissident'
         | 
| 349 | 
             
                            )
         | 
|  | |
| 350 | 
             
                            self.networks[this_network]['network_data_to_keep']['actual_homophily'] = compute_homophily(
         | 
| 351 | 
            -
                                self.networks[this_network]["network"],
         | 
| 352 | 
            -
                                attr_name='dissident'
         | 
| 353 | 
             
                            )
         | 
| 354 | 
             
                        if i > 0:
         | 
| 355 | 
            -
                            # Reindex so node ids match across networks
         | 
| 356 | 
             
                            first_key = next(iter(self.networks))
         | 
| 357 | 
             
                            self.networks[this_network]["network"] = reindex_graph_to_match_attributes(
         | 
| 358 | 
            -
                                self.networks[first_key]["network"],
         | 
| 359 | 
            -
                                self.networks[this_network]["network"],
         | 
| 360 | 
            -
                                'dissident'
         | 
| 361 | 
             
                            )
         | 
| 362 |  | 
| 363 | 
            -
                    # Create agents and  | 
| 364 | 
             
                    self.id2agent = {}
         | 
| 365 | 
             
                    first_key = next(iter(self.networks))
         | 
| 366 | 
             
                    for i in range(self.num_agents):
         | 
| @@ -375,16 +310,13 @@ class PoliticalModel(Model): | |
| 375 | 
             
                        "Median": compute_median,
         | 
| 376 | 
             
                        "STD": compute_std
         | 
| 377 | 
             
                    }
         | 
| 378 | 
            -
             | 
| 379 | 
             
                    for this_network in self.networks:
         | 
| 380 | 
             
                        if 'network_data_to_keep' in self.networks[this_network]:
         | 
| 381 | 
             
                            for key, value in self.networks[this_network]['network_data_to_keep'].items():
         | 
| 382 | 
             
                                attr_name = this_network + '_' + key
         | 
| 383 | 
             
                                setattr(self, attr_name, value)
         | 
| 384 | 
            -
             | 
| 385 | 
             
                                def reporter(model, attr_name=attr_name):
         | 
| 386 | 
             
                                    return getattr(model, attr_name)
         | 
| 387 | 
            -
             | 
| 388 | 
             
                                model_reporters[attr_name] = reporter
         | 
| 389 |  | 
| 390 | 
             
                    if agent_reporters:
         | 
| @@ -401,44 +333,37 @@ class PoliticalModel(Model): | |
| 401 | 
             
                    # Interventions
         | 
| 402 | 
             
                    for this_intervention in self.intervention_list:
         | 
| 403 | 
             
                        if this_intervention['time'] == len(self.mean_estimations):
         | 
| 404 | 
            -
             | 
| 405 | 
             
                            if this_intervention['type'] == 'threshold_adjustment':
         | 
| 406 | 
             
                                self.threshold = max(0, min(1, self.threshold + this_intervention['strength']))
         | 
| 407 | 
            -
             | 
| 408 | 
             
                            if this_intervention['type'] == 'share_adjustment':
         | 
| 409 | 
             
                                target_supporter_share = max(0, min(1, self.share_regime_supporters + this_intervention['strength']))
         | 
| 410 | 
            -
             | 
| 411 | 
            -
                                 | 
| 412 | 
            -
                                current_supporters = sum(not agent.dissident for agent in agents)
         | 
| 413 | 
             
                                total_agents = len(agents)
         | 
| 414 | 
            -
                                current_share = current_supporters / total_agents
         | 
| 415 | 
            -
             | 
| 416 | 
             
                                required_supporters = int(target_supporter_share * total_agents)
         | 
| 417 | 
            -
                                 | 
| 418 | 
            -
             | 
| 419 | 
            -
             | 
| 420 | 
            -
                                     | 
| 421 | 
            -
             | 
| 422 | 
            -
             | 
| 423 | 
            -
             | 
| 424 | 
            -
                                     | 
| 425 | 
            -
             | 
| 426 | 
            -
                                        agent.dissident = True
         | 
| 427 | 
            -
             | 
| 428 | 
             
                            if this_intervention['type'] == 'social_media_adjustment':
         | 
| 429 | 
            -
                                self.social_media_factor = max(0, min(1, self.social_media_factor +  | 
| 430 |  | 
| 431 | 
             
                    self.schedule.step()
         | 
| 432 | 
            -
                     | 
| 433 | 
            -
                    self.mean_estimations.append(current_mean_estimation)
         | 
| 434 |  | 
| 435 | 
             
                    if len(self.mean_estimations) >= self.early_stopping_steps:
         | 
| 436 | 
            -
                         | 
| 437 | 
            -
                        if max( | 
| 438 | 
             
                            self.running = False
         | 
| 439 |  | 
| 440 | 
            -
             | 
| 441 | 
            -
             | 
|  | |
| 442 | 
             
            def run_and_plot_simulation(
         | 
| 443 | 
             
                separate_agent_types=False,
         | 
| 444 | 
             
                n_agents=300,
         | 
| @@ -458,57 +383,49 @@ def run_and_plot_simulation( | |
| 458 | 
             
                social_media_network_type_powerlaw_exponent=3,
         | 
| 459 | 
             
                social_media_network_type='Powerlaw',
         | 
| 460 | 
             
                use_social_media_network=False,
         | 
| 461 | 
            -
                social_media_factor=1.0, | 
| 462 | 
             
                rng_seed=None
         | 
| 463 | 
             
            ):
         | 
| 464 | 
             
                print(physical_network_type)
         | 
| 465 | 
            -
             | 
| 466 | 
             
                networks = {}
         | 
| 467 |  | 
| 468 | 
             
                # Physical network
         | 
| 469 | 
             
                if physical_network_type == 'Fully Connected':
         | 
| 470 | 
             
                    G = nx.complete_graph(n_agents)
         | 
| 471 | 
             
                    networks['physical'] = {"network": G, "type": "physical", "positions": nx.circular_layout(G)}
         | 
| 472 | 
            -
             | 
| 473 | 
             
                elif physical_network_type == "Powerlaw":
         | 
| 474 | 
             
                    s = nx.utils.powerlaw_sequence(n_agents, powerlaw_exponent)
         | 
| 475 | 
             
                    G = nx.expected_degree_graph(s, selfloops=False)
         | 
| 476 | 
             
                    G = nx.convert_node_labels_to_integers(ensure_neighbors(G))
         | 
| 477 | 
             
                    networks['physical'] = {"network": G, "type": "physical", "positions": nx.kamada_kawai_layout(G)}
         | 
| 478 | 
            -
             | 
| 479 | 
             
                elif physical_network_type == "Random Geometric":
         | 
| 480 | 
            -
                     | 
| 481 | 
            -
                    G = graph_from_coordinates( | 
| 482 | 
             
                    G = nx.convert_node_labels_to_integers(ensure_neighbors(G))
         | 
| 483 | 
            -
                    networks['physical'] = {"network": G, "type": "physical", "positions":  | 
| 484 |  | 
| 485 | 
             
                if introduce_physical_homophily_true_false:
         | 
| 486 | 
             
                    networks['physical']['homophily'] = physical_homophily
         | 
| 487 | 
            -
                networks['physical'] | 
| 488 |  | 
| 489 | 
             
                # Social media network
         | 
| 490 | 
             
                if use_social_media_network:
         | 
| 491 | 
             
                    if social_media_network_type == 'Fully Connected':
         | 
| 492 | 
             
                        G = nx.complete_graph(n_agents)
         | 
| 493 | 
             
                        networks['social_media'] = {"network": G, "type": "social_media", "positions": nx.circular_layout(G)}
         | 
| 494 | 
            -
             | 
| 495 | 
             
                    elif social_media_network_type == "Powerlaw":
         | 
| 496 | 
             
                        s = nx.utils.powerlaw_sequence(n_agents, social_media_network_type_powerlaw_exponent)
         | 
| 497 | 
             
                        G = nx.expected_degree_graph(s, selfloops=False)
         | 
| 498 | 
             
                        G = nx.convert_node_labels_to_integers(ensure_neighbors(G))
         | 
| 499 | 
             
                        networks['social_media'] = {"network": G, "type": "social_media", "positions": nx.kamada_kawai_layout(G)}
         | 
| 500 | 
            -
             | 
| 501 | 
             
                    elif social_media_network_type == "Random Geometric":
         | 
| 502 | 
            -
                         | 
| 503 | 
            -
                        G = graph_from_coordinates( | 
| 504 | 
             
                        G = nx.convert_node_labels_to_integers(ensure_neighbors(G))
         | 
| 505 | 
            -
                        networks['social_media'] = {"network": G, "type": "social_media", "positions":  | 
| 506 | 
            -
             | 
| 507 | 
             
                    if introduce_social_media_homophily_true_false:
         | 
| 508 | 
             
                        networks['social_media']['homophily'] = social_media_homophily
         | 
| 509 | 
            -
                    networks['social_media'] | 
| 510 | 
            -
             | 
| 511 | 
            -
                intervention_list = []
         | 
| 512 |  | 
| 513 | 
             
                model = PoliticalModel(
         | 
| 514 | 
             
                    n_agents,
         | 
| @@ -516,12 +433,12 @@ def run_and_plot_simulation( | |
| 516 | 
             
                    share_regime_supporters,
         | 
| 517 | 
             
                    threshold,
         | 
| 518 | 
             
                    social_learning_factor=social_learning_factor,
         | 
| 519 | 
            -
                    social_media_factor=social_media_factor, | 
| 520 | 
             
                    half_life=half_life,
         | 
| 521 | 
             
                    print_agents=False,
         | 
| 522 | 
             
                    print_frequency=50,
         | 
| 523 | 
             
                    agent_reporters=True,
         | 
| 524 | 
            -
                    intervention_list= | 
| 525 | 
             
                    rng_seed=rng_seed
         | 
| 526 | 
             
                )
         | 
| 527 |  | 
| @@ -531,75 +448,64 @@ def run_and_plot_simulation( | |
| 531 | 
             
                agent_df = model.datacollector.get_agent_vars_dataframe().reset_index()
         | 
| 532 | 
             
                agent_df_pivot = agent_df.pivot(index='Step', columns='AgentID', values='Estimation')
         | 
| 533 |  | 
| 534 | 
            -
                 | 
|  | |
| 535 | 
             
                if not separate_agent_types:
         | 
| 536 | 
            -
                    for  | 
| 537 | 
            -
                        plt.plot(agent_df_pivot.index, agent_df_pivot[ | 
| 538 | 
            -
                     | 
| 539 | 
            -
                    plt.plot( | 
| 540 | 
             
                else:
         | 
| 541 | 
             
                    colors = {1: '#d6a44b', 0: '#1b4968'}
         | 
| 542 | 
            -
                     | 
| 543 | 
            -
             | 
| 544 | 
            -
             | 
| 545 | 
            -
             | 
| 546 | 
            -
                         | 
| 547 | 
            -
             | 
| 548 | 
            -
                    for agent_type, color in colors.items():
         | 
| 549 | 
            -
                        mean_estimation = agent_df_pivot.loc[:, agent_df[agent_df['Dissident'] == agent_type]['AgentID']].mean(axis=1)
         | 
| 550 | 
            -
                        plt.plot(mean_estimation.index, mean_estimation, color=color, linewidth=2, label=f'{labels[agent_type]}')
         | 
| 551 | 
             
                    plt.legend(loc='lower right')
         | 
| 552 |  | 
| 553 | 
             
                plt.title('Agent Estimation Over Time', loc='right')
         | 
| 554 | 
             
                plt.xlabel('Time step')
         | 
| 555 | 
             
                plt.ylabel('Estimation')
         | 
| 556 | 
            -
             | 
| 557 | 
             
                plt.savefig('run_plot.png', bbox_inches='tight', dpi=400, transparent=True)
         | 
| 558 | 
             
                run_plot = PIL.Image.open('run_plot.png').convert('RGBA')
         | 
| 559 |  | 
| 560 | 
             
                # Network plot
         | 
| 561 | 
             
                n_networks = len(networks)
         | 
| 562 | 
            -
                 | 
| 563 | 
             
                if n_networks == 1:
         | 
| 564 | 
             
                    axs = [axs]
         | 
| 565 |  | 
| 566 | 
            -
                estimations = {}
         | 
| 567 | 
            -
                for  | 
| 568 | 
            -
                     | 
| 569 | 
            -
             | 
| 570 | 
            -
             | 
| 571 | 
            -
                     | 
| 572 | 
            -
                     | 
| 573 | 
            -
             | 
| 574 | 
            -
                    if 'positions' in network_dict:
         | 
| 575 | 
            -
                        pos = network_dict['positions']
         | 
| 576 | 
            -
                    else:
         | 
| 577 | 
            -
                        pos = nx.kamada_kawai_layout(network)
         | 
| 578 | 
            -
             | 
| 579 | 
            -
                    node_colors = [estimations[node] for node in network.nodes]
         | 
| 580 | 
            -
                    axs[idx].set_title(f'Network: {network_id}', loc='right')
         | 
| 581 | 
            -
             | 
| 582 | 
             
                    nx.draw_networkx_nodes(
         | 
| 583 | 
            -
                         | 
| 584 | 
             
                        cmap=cmocean.tools.crop_by_percent(cmocean.cm.curl, 20, which='both', N=None),
         | 
| 585 | 
             
                        vmin=0, vmax=1, ax=axs[idx]
         | 
| 586 | 
             
                    )
         | 
| 587 | 
            -
                    nx.draw_networkx_edges( | 
| 588 | 
            -
             | 
| 589 | 
             
                    sm = mpl.cm.ScalarMappable(
         | 
| 590 | 
             
                        cmap=cmocean.tools.crop_by_percent(cmocean.cm.curl, 20, which='both', N=None),
         | 
| 591 | 
             
                        norm=plt.Normalize(vmin=0, vmax=1)
         | 
| 592 | 
             
                    )
         | 
| 593 | 
             
                    sm.set_array([])
         | 
| 594 | 
            -
                     | 
| 595 |  | 
| 596 | 
             
                plt.savefig('network_plot.png', bbox_inches='tight', dpi=400, transparent=True)
         | 
| 597 | 
             
                network_plot = PIL.Image.open('network_plot.png').convert('RGBA')
         | 
| 598 |  | 
| 599 | 
             
                return run_plot, network_plot
         | 
| 600 |  | 
|  | |
|  | |
|  | |
| 601 | 
             
            import gradio as gr
         | 
| 602 | 
            -
            import matplotlib.pyplot as plt
         | 
| 603 |  | 
| 604 | 
             
            with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
         | 
| 605 | 
             
                with gr.Column():
         | 
| @@ -610,25 +516,21 @@ Vary the parameters below, and click 'Run Simulation' to run. | |
| 610 | 
             
                        with gr.Column():
         | 
| 611 | 
             
                            with gr.Group():
         | 
| 612 | 
             
                                separate_agent_types = gr.Checkbox(value=False, label="Separate agent types in plot")
         | 
| 613 | 
            -
             | 
| 614 | 
            -
                                 | 
| 615 | 
            -
                                 | 
| 616 | 
            -
                                 | 
| 617 | 
            -
                                 | 
| 618 | 
            -
                                 | 
| 619 | 
            -
                                half_life_slider = gr.Slider(minimum=5, maximum=50, step=5, label="Half-Life", value=20)
         | 
| 620 |  | 
| 621 | 
             
                                # Physical network settings
         | 
| 622 | 
             
                                with gr.Group():
         | 
| 623 | 
             
                                    gr.Markdown("""**Physical Network Settings:**""")
         | 
| 624 | 
             
                                    introduce_physical_homophily_true_false = gr.Checkbox(value=False, label="Stipulate Homophily")
         | 
| 625 | 
            -
             | 
| 626 | 
             
                                    with gr.Group(visible=False) as homophily_group:
         | 
| 627 | 
             
                                        physical_homophily = gr.Slider(0, 1, label="Homophily", info='How much homophily to stipulate.')
         | 
| 628 | 
            -
             | 
| 629 | 
             
                                    def update_homophily_group_visibility(checkbox_state):
         | 
| 630 | 
             
                                        return {homophily_group: gr.Group(visible=checkbox_state)}
         | 
| 631 | 
            -
             | 
| 632 | 
             
                                    introduce_physical_homophily_true_false.change(
         | 
| 633 | 
             
                                        update_homophily_group_visibility,
         | 
| 634 | 
             
                                        inputs=introduce_physical_homophily_true_false,
         | 
| @@ -637,83 +539,70 @@ Vary the parameters below, and click 'Run Simulation' to run. | |
| 637 |  | 
| 638 | 
             
                                    physical_network_type = gr.Dropdown(label="Physical Network Type", value="Fully Connected",
         | 
| 639 | 
             
                                                                        choices=["Fully Connected", "Random Geometric", "Powerlaw"])
         | 
| 640 | 
            -
             | 
| 641 | 
             
                                    with gr.Group(visible=True) as physical_network_type_fully_connected_group:
         | 
| 642 | 
             
                                        gr.Markdown("""""")
         | 
| 643 | 
            -
             | 
| 644 | 
             
                                    with gr.Group(visible=False) as physical_network_type_random_geometric_group:
         | 
| 645 | 
            -
                                        physical_network_type_random_geometric_radius = gr.Slider( | 
| 646 | 
            -
             | 
| 647 | 
             
                                    with gr.Group(visible=False) as physical_network_type_powerlaw_group:
         | 
| 648 | 
            -
                                        physical_network_type_random_geometric_powerlaw_exponent = gr.Slider( | 
| 649 | 
            -
             | 
| 650 | 
             
                                    def update_sliders(option):
         | 
| 651 | 
             
                                        return {
         | 
| 652 | 
             
                                            physical_network_type_fully_connected_group: gr.Group(visible=option == "Fully Connected"),
         | 
| 653 | 
             
                                            physical_network_type_random_geometric_group: gr.Group(visible=option == "Random Geometric"),
         | 
| 654 | 
             
                                            physical_network_type_powerlaw_group: gr.Group(visible=option == "Powerlaw")
         | 
| 655 | 
             
                                        }
         | 
| 656 | 
            -
             | 
| 657 | 
             
                                    physical_network_type.change(
         | 
| 658 | 
             
                                        update_sliders,
         | 
| 659 | 
             
                                        inputs=physical_network_type,
         | 
| 660 | 
            -
                                        outputs=[ | 
| 661 | 
            -
             | 
| 662 | 
            -
             | 
|  | |
|  | |
| 663 | 
             
                                    )
         | 
| 664 |  | 
| 665 | 
             
                            # Social media settings
         | 
| 666 | 
             
                            use_social_media_network = gr.Checkbox(value=False, label="Use social media network")
         | 
| 667 | 
             
                            with gr.Group(visible=False) as social_media_group:
         | 
| 668 | 
             
                                gr.Markdown("""**Social Media Network Settings:**""")
         | 
| 669 | 
            -
             | 
| 670 | 
             
                                social_media_factor = gr.Slider(0, 2, label="Social Media Factor",
         | 
| 671 | 
             
                                                                info='Weight of social media vs learning in the real world.',
         | 
| 672 | 
             
                                                                value=1.0)
         | 
| 673 | 
             
                                introduce_social_media_homophily_true_false = gr.Checkbox(value=False, label="Stipulate Homophily")
         | 
| 674 | 
            -
             | 
| 675 | 
             
                                with gr.Group(visible=False) as social_media_homophily_group:
         | 
| 676 | 
             
                                    social_media_homophily = gr.Slider(0, 1, label="Homophily", info='How much homophily to stipulate in social media network.')
         | 
| 677 | 
            -
             | 
| 678 | 
             
                                def update_social_media_homophily_group_visibility(checkbox_state):
         | 
| 679 | 
             
                                    return {social_media_homophily_group: gr.Group(visible=checkbox_state)}
         | 
| 680 | 
            -
             | 
| 681 | 
             
                                introduce_social_media_homophily_true_false.change(
         | 
| 682 | 
             
                                    update_social_media_homophily_group_visibility,
         | 
| 683 | 
             
                                    inputs=introduce_social_media_homophily_true_false,
         | 
| 684 | 
             
                                    outputs=social_media_homophily_group
         | 
| 685 | 
             
                                )
         | 
| 686 | 
            -
             | 
| 687 | 
             
                                social_media_network_type = gr.Dropdown(label="Social Media Network Type", value="Fully Connected",
         | 
| 688 | 
             
                                                                        choices=["Fully Connected", "Random Geometric", "Powerlaw"])
         | 
| 689 | 
            -
             | 
| 690 | 
             
                                with gr.Group(visible=True) as social_media_network_type_fully_connected_group:
         | 
| 691 | 
             
                                    gr.Markdown("""""")
         | 
| 692 | 
            -
             | 
| 693 | 
             
                                with gr.Group(visible=False) as social_media_network_type_random_geometric_group:
         | 
| 694 | 
            -
                                    social_media_network_type_random_geometric_radius = gr.Slider( | 
| 695 | 
            -
             | 
| 696 | 
             
                                with gr.Group(visible=False) as social_media_network_type_powerlaw_group:
         | 
| 697 | 
            -
                                    social_media_network_type_powerlaw_exponent = gr.Slider( | 
| 698 | 
            -
             | 
| 699 | 
             
                                def update_social_media_network_sliders(option):
         | 
| 700 | 
             
                                    return {
         | 
| 701 | 
             
                                        social_media_network_type_fully_connected_group: gr.Group(visible=option == "Fully Connected"),
         | 
| 702 | 
             
                                        social_media_network_type_random_geometric_group: gr.Group(visible=option == "Random Geometric"),
         | 
| 703 | 
             
                                        social_media_network_type_powerlaw_group: gr.Group(visible=option == "Powerlaw")
         | 
| 704 | 
             
                                    }
         | 
| 705 | 
            -
             | 
| 706 | 
             
                                social_media_network_type.change(
         | 
| 707 | 
             
                                    update_social_media_network_sliders,
         | 
| 708 | 
             
                                    inputs=social_media_network_type,
         | 
| 709 | 
            -
                                    outputs=[ | 
| 710 | 
            -
             | 
| 711 | 
            -
             | 
|  | |
|  | |
| 712 | 
             
                                )
         | 
| 713 | 
            -
             | 
| 714 | 
             
                            def update_social_media_group_visibility(checkbox_state):
         | 
| 715 | 
             
                                return {social_media_group: gr.Group(visible=checkbox_state)}
         | 
| 716 | 
            -
             | 
| 717 | 
             
                            use_social_media_network.change(
         | 
| 718 | 
             
                                update_social_media_group_visibility,
         | 
| 719 | 
             
                                inputs=use_social_media_network,
         | 
| @@ -726,8 +615,7 @@ Vary the parameters below, and click 'Run Simulation' to run. | |
| 726 | 
             
                            network_output = gr.Image(label="Networks")
         | 
| 727 |  | 
| 728 | 
             
                    def run_simulation_and_plot(*args):
         | 
| 729 | 
            -
                         | 
| 730 | 
            -
                        return fig
         | 
| 731 |  | 
| 732 | 
             
                    button.click(
         | 
| 733 | 
             
                        run_simulation_and_plot,
         | 
| @@ -750,11 +638,10 @@ Vary the parameters below, and click 'Run Simulation' to run. | |
| 750 | 
             
                            social_media_network_type_powerlaw_exponent,
         | 
| 751 | 
             
                            social_media_network_type,
         | 
| 752 | 
             
                            use_social_media_network,
         | 
| 753 | 
            -
                            social_media_factor, | 
| 754 | 
             
                        ],
         | 
| 755 | 
             
                        outputs=[plot_output, network_output]
         | 
| 756 | 
             
                    )
         | 
| 757 |  | 
| 758 | 
            -
            # Launch the interface
         | 
| 759 | 
             
            if __name__ == "__main__":
         | 
| 760 | 
             
                demo.launch(debug=True)
         | 
|  | |
| 5 | 
             
                https://colab.research.google.com/drive/1omNn2hrbDL_s1qwCOr7ViaIjrRW61YDt
         | 
| 6 | 
             
            """
         | 
| 7 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 8 | 
             
            import random
         | 
| 9 | 
             
            import pandas as pd
         | 
| 10 | 
             
            from mesa import Agent, Model
         | 
|  | |
| 11 | 
             
            import networkx as nx
         | 
| 12 | 
             
            from mesa.time import RandomActivation
         | 
| 13 | 
             
            from mesa.datacollection import DataCollector
         | 
|  | |
| 15 | 
             
            import seaborn as sns
         | 
| 16 | 
             
            import matplotlib.pyplot as plt
         | 
| 17 | 
             
            import matplotlib as mpl
         | 
|  | |
| 18 | 
             
            import cmocean
         | 
|  | |
| 19 | 
             
            import tqdm
         | 
|  | |
| 20 | 
             
            import scipy as sp
         | 
|  | |
|  | |
|  | |
| 21 | 
             
            from scipy.stats import beta
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 22 | 
             
            import opinionated
         | 
| 23 | 
            +
            import PIL
         | 
| 24 |  | 
| 25 | 
             
            plt.style.use("opinionated_rc")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 |  | 
| 27 | 
            +
            # -----------------------------
         | 
| 28 | 
            +
            # Decayed Beta helpers
         | 
| 29 | 
            +
            # -----------------------------
         | 
| 30 | 
             
            def apply_half_life_decay(data_list, half_life, decay_factors=None):
         | 
| 31 | 
             
                steps = len(data_list)
         | 
| 32 | 
             
                if decay_factors is None or len(decay_factors) < steps:
         | 
| 33 | 
             
                    decay_factors = [0.5 ** (i / half_life) for i in range(steps)]
         | 
| 34 | 
            +
                return [data_list[i] * decay_factors[steps - 1 - i] for i in range(steps)]
         | 
|  | |
|  | |
|  | |
|  | |
| 35 |  | 
| 36 | 
             
            def get_beta_mean_from_experience_dict(experiences, half_life=20, decay_factors=None):
         | 
| 37 | 
             
                eta = 1e-10
         | 
| 38 | 
            +
                a = sum(apply_half_life_decay(experiences['dissident_experiences'], half_life, decay_factors)) + eta
         | 
| 39 | 
            +
                b = sum(apply_half_life_decay(experiences['supporter_experiences'], half_life, decay_factors)) + eta
         | 
| 40 | 
            +
                return beta.mean(a, b)
         | 
|  | |
| 41 |  | 
| 42 | 
             
            def get_beta_sample_from_experience_dict(experiences, half_life=20, decay_factors=None):
         | 
| 43 | 
             
                eta = 1e-10
         | 
| 44 | 
            +
                a = sum(apply_half_life_decay(experiences['dissident_experiences'], half_life, decay_factors)) + eta
         | 
| 45 | 
            +
                b = sum(apply_half_life_decay(experiences['supporter_experiences'], half_life, decay_factors)) + eta
         | 
| 46 | 
            +
                return beta.rvs(a, b, size=1)[0]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 47 |  | 
| 48 | 
            +
            # -----------------------------
         | 
| 49 | 
            +
            # Network helpers
         | 
| 50 | 
            +
            # -----------------------------
         | 
| 51 | 
             
            def generate_community_points(num_communities, total_nodes, powerlaw_exponent=2.0, sigma=0.05, plot=False):
         | 
|  | |
|  | |
|  | |
| 52 | 
             
                sequence = nx.utils.powerlaw_sequence(num_communities, powerlaw_exponent)
         | 
| 53 | 
             
                probabilities = sequence / np.sum(sequence)
         | 
|  | |
| 54 | 
             
                community_assignments = np.random.choice(num_communities, size=total_nodes, p=probabilities)
         | 
| 55 | 
             
                community_sizes = np.bincount(community_assignments)
         | 
| 56 | 
             
                if len(community_sizes) < num_communities:
         | 
| 57 | 
             
                    community_sizes = np.pad(community_sizes, (0, num_communities - len(community_sizes)), 'constant')
         | 
| 58 | 
            +
                points, community_centers = [], []
         | 
|  | |
|  | |
|  | |
| 59 | 
             
                for i in range(num_communities):
         | 
| 60 | 
             
                    center = np.random.rand(2)
         | 
| 61 | 
             
                    community_centers.append(center)
         | 
| 62 | 
             
                    community_points = np.random.normal(center, sigma, (community_sizes[i], 2))
         | 
| 63 | 
             
                    points.append(community_points)
         | 
|  | |
| 64 | 
             
                points = np.concatenate(points)
         | 
|  | |
| 65 | 
             
                if plot:
         | 
| 66 | 
             
                    plt.figure(figsize=(8, 8))
         | 
| 67 | 
             
                    plt.scatter(points[:, 0], points[:, 1], alpha=0.5)
         | 
| 68 | 
             
                    sns.kdeplot(x=points[:, 0], y=points[:, 1], levels=5, color="k", linewidths=1)
         | 
| 69 | 
             
                    plt.show()
         | 
|  | |
| 70 | 
             
                return points
         | 
| 71 |  | 
| 72 | 
             
            def graph_from_coordinates(coords, radius):
         | 
|  | |
|  | |
|  | |
| 73 | 
             
                kdtree = sp.spatial.cKDTree(coords)
         | 
| 74 | 
             
                edge_indexes = kdtree.query_pairs(radius)
         | 
| 75 | 
             
                g = nx.Graph()
         | 
|  | |
| 77 | 
             
                g.add_edges_from(edge_indexes)
         | 
| 78 | 
             
                return g
         | 
| 79 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 80 | 
             
            def ensure_neighbors(graph):
         | 
|  | |
|  | |
|  | |
| 81 | 
             
                nodes = list(graph.nodes())
         | 
| 82 | 
             
                for node in nodes:
         | 
| 83 | 
            +
                    if graph.degree(node) == 0:
         | 
| 84 | 
            +
                        other = random.choice(nodes)
         | 
| 85 | 
            +
                        while other == node:
         | 
| 86 | 
            +
                            other = random.choice(nodes)
         | 
| 87 | 
            +
                        graph.add_edge(node, other)
         | 
| 88 | 
             
                return graph
         | 
| 89 |  | 
| 90 | 
             
            def compute_homophily(G, attr_name='attr'):
         | 
| 91 | 
            +
                same = sum(G.nodes[n1][attr_name] == G.nodes[n2][attr_name] for n1, n2 in G.edges())
         | 
| 92 | 
            +
                m = G.number_of_edges()
         | 
| 93 | 
            +
                return same / m if m > 0 else 0
         | 
| 94 |  | 
| 95 | 
             
            def assign_initial_attributes(G, ratio, attr_name='attr'):
         | 
| 96 | 
             
                nodes = list(G.nodes)
         | 
| 97 | 
             
                random.shuffle(nodes)
         | 
| 98 | 
            +
                k = int(ratio * len(nodes))
         | 
| 99 | 
             
                for i, node in enumerate(nodes):
         | 
| 100 | 
            +
                    G.nodes[node][attr_name] = 0 if i < k else 1
         | 
| 101 | 
             
                return G
         | 
| 102 |  | 
| 103 | 
             
            def distribute_attributes(G, target_homophily, seed=None, max_iter=10000, cooling_factor=0.9995, attr_name='attr'):
         | 
| 104 | 
             
                random.seed(seed)
         | 
| 105 | 
            +
                current = compute_homophily(G, attr_name)
         | 
| 106 | 
             
                temp = 1.0
         | 
| 107 | 
            +
                for _ in range(max_iter):
         | 
|  | |
| 108 | 
             
                    nodes = list(G.nodes)
         | 
| 109 | 
             
                    random.shuffle(nodes)
         | 
| 110 | 
            +
                    for n1, n2 in zip(nodes[::2], nodes[1::2]):
         | 
| 111 | 
            +
                        if G.nodes[n1][attr_name] != G.nodes[n2][attr_name]:
         | 
| 112 | 
            +
                            G.nodes[n1][attr_name], G.nodes[n2][attr_name] = G.nodes[n2][attr_name], G.nodes[n1][attr_name]
         | 
| 113 | 
             
                            break
         | 
| 114 | 
            +
                    new = compute_homophily(G, attr_name)
         | 
| 115 | 
            +
                    delta = new - current
         | 
| 116 | 
            +
                    dir_factor = np.sign(target_homophily - current)
         | 
| 117 | 
            +
                    if abs(new - target_homophily) < abs(current - target_homophily) or \
         | 
| 118 | 
            +
                       (delta / temp < 700 and random.random() < np.exp(dir_factor * delta / temp)):
         | 
| 119 | 
            +
                        current = new
         | 
|  | |
|  | |
| 120 | 
             
                    else:
         | 
| 121 | 
            +
                        G.nodes[n1][attr_name], G.nodes[n2][attr_name] = G.nodes[n2][attr_name], G.nodes[n1][attr_name]
         | 
|  | |
| 122 | 
             
                    temp *= cooling_factor
         | 
|  | |
| 123 | 
             
                return G
         | 
| 124 |  | 
| 125 | 
             
            def reindex_graph_to_match_attributes(G1, G2, attr_name):
         | 
| 126 | 
            +
                g1_sorted = sorted(G1.nodes(data=True), key=lambda x: x[1][attr_name])
         | 
| 127 | 
            +
                g2_sorted = sorted(G2.nodes(data=True), key=lambda x: x[1][attr_name])
         | 
| 128 | 
            +
                mapping = {g2[0]: g1[0] for g2, g1 in zip(g2_sorted, g1_sorted)}
         | 
| 129 | 
            +
                return nx.relabel_nodes(G2, mapping)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            # -----------------------------
         | 
| 132 | 
            +
            # Reporters
         | 
| 133 | 
            +
            # -----------------------------
         | 
| 134 | 
             
            def compute_mean(model):
         | 
| 135 | 
            +
                return np.mean([a.estimation for a in model.schedule.agents])
         | 
|  | |
| 136 |  | 
| 137 | 
             
            def compute_median(model):
         | 
| 138 | 
            +
                return np.median([a.estimation for a in model.schedule.agents])
         | 
|  | |
| 139 |  | 
| 140 | 
             
            def compute_std(model):
         | 
| 141 | 
            +
                return np.std([a.estimation for a in model.schedule.agents])
         | 
|  | |
| 142 |  | 
| 143 | 
            +
            # -----------------------------
         | 
| 144 | 
            +
            # Agent and Model
         | 
| 145 | 
            +
            # -----------------------------
         | 
| 146 | 
             
            class PoliticalAgent(Agent):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 147 | 
             
                def __init__(self, unique_id, model, dissident):
         | 
| 148 | 
            +
                    # Mesa versions differ here. Try the new signature, then fall back.
         | 
| 149 | 
            +
                    try:
         | 
| 150 | 
            +
                        super().__init__(unique_id, model)
         | 
| 151 | 
            +
                    except TypeError:
         | 
| 152 | 
            +
                        super().__init__()      # object.__init__ without args
         | 
| 153 | 
            +
                        self.unique_id = unique_id
         | 
| 154 | 
            +
                        self.model = model
         | 
| 155 | 
            +
                        # provide .random like classic Mesa Agent did
         | 
| 156 | 
            +
                        if hasattr(model, "random"):
         | 
| 157 | 
            +
                            self.random = model.random
         | 
| 158 | 
            +
             | 
| 159 | 
             
                    self.experiences = {
         | 
| 160 | 
             
                        'dissident_experiences': [1],
         | 
| 161 | 
             
                        'supporter_experiences': [1],
         | 
|  | |
| 166 | 
             
                    self.dissident = dissident
         | 
| 167 |  | 
| 168 | 
             
                def update_estimation(self, network_id):
         | 
| 169 | 
            +
                    partners = [self.model.id2agent[n]
         | 
| 170 | 
            +
                                for n in self.model.networks[network_id]['network'].neighbors(self.unique_id)]
         | 
|  | |
| 171 |  | 
| 172 | 
            +
                    current_estimate = get_beta_mean_from_experience_dict(
         | 
| 173 | 
            +
                        self.experiences, half_life=self.model.half_life, decay_factors=self.model.decay_factors)
         | 
| 174 | 
             
                    self.estimations.append(current_estimate)
         | 
| 175 | 
             
                    self.estimation = current_estimate
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    current_experiment = get_beta_sample_from_experience_dict(
         | 
| 178 | 
            +
                        self.experiences, half_life=self.model.half_life, decay_factors=self.model.decay_factors)
         | 
| 179 | 
             
                    self.experiments.append(current_experiment)
         | 
| 180 |  | 
| 181 | 
            +
                    if not partners:
         | 
| 182 | 
            +
                        return
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 183 |  | 
| 184 | 
            +
                    partner = random.choice(partners)
         | 
| 185 | 
            +
                    ntype = self.model.networks[network_id]['type']
         | 
|  | |
|  | |
|  | |
| 186 |  | 
| 187 | 
            +
                    if ntype == 'physical':
         | 
| 188 | 
            +
                        if current_experiment >= self.model.threshold:
         | 
| 189 | 
             
                            if partner.dissident:
         | 
| 190 | 
            +
                                self.experiences['dissident_experiences'].append(1)
         | 
| 191 | 
             
                                self.experiences['supporter_experiences'].append(0)
         | 
| 192 | 
             
                            else:
         | 
| 193 | 
             
                                self.experiences['dissident_experiences'].append(0)
         | 
| 194 | 
            +
                                self.experiences['supporter_experiences'].append(1)
         | 
| 195 | 
            +
                            partner.experiences['dissident_experiences'].append(1 * self.model.social_learning_factor)
         | 
| 196 | 
            +
                            partner.experiences['supporter_experiences'].append(0)
         | 
| 197 | 
            +
                        else:
         | 
| 198 | 
            +
                            partner.experiences['dissident_experiences'].append(0)
         | 
| 199 | 
            +
                            partner.experiences['supporter_experiences'].append(1 * self.model.social_learning_factor)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    elif ntype == 'social_media':
         | 
| 202 | 
            +
                        if partner.dissident:
         | 
| 203 | 
            +
                            self.experiences['dissident_experiences'].append(1 * self.model.social_media_factor)
         | 
| 204 | 
            +
                            self.experiences['supporter_experiences'].append(0)
         | 
| 205 | 
            +
                        else:
         | 
| 206 | 
            +
                            self.experiences['dissident_experiences'].append(0)
         | 
| 207 | 
            +
                            self.experiences['supporter_experiences'].append(1 * self.model.social_media_factor)
         | 
| 208 |  | 
| 209 | 
             
                def combine_estimations(self):
         | 
| 210 | 
            +
                    # Bounded confidence placeholder; keep harmless
         | 
| 211 | 
             
                    if not hasattr(self, "current_estimations"):
         | 
| 212 | 
             
                        return
         | 
| 213 | 
             
                    values = [list(d.values())[0] for d in self.current_estimations]
         | 
| 214 | 
             
                    if len(values) > 0:
         | 
| 215 | 
            +
                        within = [v for v in values if abs(self.estimation - v) <= self.model.bounded_confidence_range]
         | 
| 216 | 
            +
                        if len(within) > 0:
         | 
| 217 | 
            +
                            self.estimation = np.mean(within)
         | 
| 218 |  | 
| 219 | 
             
                def step(self):
         | 
| 220 | 
             
                    if not hasattr(self, 'current_estimations'):
         | 
| 221 | 
             
                        self.current_estimations = []
         | 
| 222 | 
            +
                    for net_id in self.model.networks.keys():
         | 
| 223 | 
            +
                        self.update_estimation(net_id)
         | 
| 224 | 
             
                    self.combine_estimations()
         | 
| 225 | 
             
                    del self.current_estimations
         | 
| 226 |  | 
| 227 | 
             
            class PoliticalModel(Model):
         | 
|  | |
|  | |
| 228 | 
             
                def __init__(
         | 
| 229 | 
             
                    self,
         | 
| 230 | 
             
                    n_agents,
         | 
|  | |
| 242 | 
             
                    intervention_list=None,
         | 
| 243 | 
             
                    rng_seed=None,
         | 
| 244 | 
             
                ):
         | 
| 245 | 
            +
                    # Ensure Mesa creates self.random
         | 
| 246 | 
             
                    try:
         | 
| 247 | 
             
                        super().__init__(rng_seed=rng_seed)  # Mesa >= 3.0
         | 
| 248 | 
             
                    except TypeError:
         | 
|  | |
| 262 | 
             
                    self.print_frequency = print_frequency
         | 
| 263 | 
             
                    self.early_stopping_steps = early_stopping_steps
         | 
| 264 | 
             
                    self.early_stopping_range = early_stopping_range
         | 
| 265 | 
            +
                    self.bounded_confidence_range = 1.0  # harmless default
         | 
| 266 |  | 
| 267 | 
             
                    self.mean_estimations = []
         | 
| 268 | 
             
                    self.decay_factors = [0.5 ** (i / self.half_life) for i in range(500)]
         | 
|  | |
| 269 | 
             
                    self.running = True
         | 
| 270 | 
             
                    self.share_regime_supporters = share_regime_supporters
         | 
| 271 |  | 
|  | |
| 275 | 
             
                    # Align attributes across networks and compute homophilies
         | 
| 276 | 
             
                    for i, this_network in enumerate(self.networks):
         | 
| 277 | 
             
                        self.networks[this_network]["network"] = assign_initial_attributes(
         | 
| 278 | 
            +
                            self.networks[this_network]["network"], self.share_regime_supporters, attr_name='dissident'
         | 
|  | |
|  | |
| 279 | 
             
                        )
         | 
| 280 | 
             
                        if 'homophily' in self.networks[this_network]:
         | 
| 281 | 
             
                            self.networks[this_network]["network"] = distribute_attributes(
         | 
|  | |
| 285 | 
             
                                cooling_factor=0.995,
         | 
| 286 | 
             
                                attr_name='dissident'
         | 
| 287 | 
             
                            )
         | 
| 288 | 
            +
                            self.networks[this_network].setdefault('network_data_to_keep', {})
         | 
| 289 | 
             
                            self.networks[this_network]['network_data_to_keep']['actual_homophily'] = compute_homophily(
         | 
| 290 | 
            +
                                self.networks[this_network]["network"], attr_name='dissident'
         | 
|  | |
| 291 | 
             
                            )
         | 
| 292 | 
             
                        if i > 0:
         | 
|  | |
| 293 | 
             
                            first_key = next(iter(self.networks))
         | 
| 294 | 
             
                            self.networks[this_network]["network"] = reindex_graph_to_match_attributes(
         | 
| 295 | 
            +
                                self.networks[first_key]["network"], self.networks[this_network]["network"], 'dissident'
         | 
|  | |
|  | |
| 296 | 
             
                            )
         | 
| 297 |  | 
| 298 | 
            +
                    # Create agents and id -> agent map
         | 
| 299 | 
             
                    self.id2agent = {}
         | 
| 300 | 
             
                    first_key = next(iter(self.networks))
         | 
| 301 | 
             
                    for i in range(self.num_agents):
         | 
|  | |
| 310 | 
             
                        "Median": compute_median,
         | 
| 311 | 
             
                        "STD": compute_std
         | 
| 312 | 
             
                    }
         | 
|  | |
| 313 | 
             
                    for this_network in self.networks:
         | 
| 314 | 
             
                        if 'network_data_to_keep' in self.networks[this_network]:
         | 
| 315 | 
             
                            for key, value in self.networks[this_network]['network_data_to_keep'].items():
         | 
| 316 | 
             
                                attr_name = this_network + '_' + key
         | 
| 317 | 
             
                                setattr(self, attr_name, value)
         | 
|  | |
| 318 | 
             
                                def reporter(model, attr_name=attr_name):
         | 
| 319 | 
             
                                    return getattr(model, attr_name)
         | 
|  | |
| 320 | 
             
                                model_reporters[attr_name] = reporter
         | 
| 321 |  | 
| 322 | 
             
                    if agent_reporters:
         | 
|  | |
| 333 | 
             
                    # Interventions
         | 
| 334 | 
             
                    for this_intervention in self.intervention_list:
         | 
| 335 | 
             
                        if this_intervention['time'] == len(self.mean_estimations):
         | 
|  | |
| 336 | 
             
                            if this_intervention['type'] == 'threshold_adjustment':
         | 
| 337 | 
             
                                self.threshold = max(0, min(1, self.threshold + this_intervention['strength']))
         | 
|  | |
| 338 | 
             
                            if this_intervention['type'] == 'share_adjustment':
         | 
| 339 | 
             
                                target_supporter_share = max(0, min(1, self.share_regime_supporters + this_intervention['strength']))
         | 
| 340 | 
            +
                                agents = list(self.schedule.agents)
         | 
| 341 | 
            +
                                current_supporters = sum(not a.dissident for a in agents)
         | 
|  | |
| 342 | 
             
                                total_agents = len(agents)
         | 
|  | |
|  | |
| 343 | 
             
                                required_supporters = int(target_supporter_share * total_agents)
         | 
| 344 | 
            +
                                to_change = abs(required_supporters - current_supporters)
         | 
| 345 | 
            +
                                if current_supporters / total_agents < target_supporter_share:
         | 
| 346 | 
            +
                                    pool = [a for a in agents if a.dissident]
         | 
| 347 | 
            +
                                    for a in random.sample(pool, min(to_change, len(pool))):
         | 
| 348 | 
            +
                                        a.dissident = False
         | 
| 349 | 
            +
                                else:
         | 
| 350 | 
            +
                                    pool = [a for a in agents if not a.dissident]
         | 
| 351 | 
            +
                                    for a in random.sample(pool, min(to_change, len(pool))):
         | 
| 352 | 
            +
                                        a.dissident = True
         | 
|  | |
|  | |
| 353 | 
             
                            if this_intervention['type'] == 'social_media_adjustment':
         | 
| 354 | 
            +
                                self.social_media_factor = max(0, min(1, self.social_media_factor + this_intervention['strength']))
         | 
| 355 |  | 
| 356 | 
             
                    self.schedule.step()
         | 
| 357 | 
            +
                    self.mean_estimations.append(compute_mean(self))
         | 
|  | |
| 358 |  | 
| 359 | 
             
                    if len(self.mean_estimations) >= self.early_stopping_steps:
         | 
| 360 | 
            +
                        recent = self.mean_estimations[-self.early_stopping_steps:]
         | 
| 361 | 
            +
                        if max(recent) - min(recent) < self.early_stopping_range:
         | 
| 362 | 
             
                            self.running = False
         | 
| 363 |  | 
| 364 | 
            +
            # -----------------------------
         | 
| 365 | 
            +
            # Runner and plotting
         | 
| 366 | 
            +
            # -----------------------------
         | 
| 367 | 
             
            def run_and_plot_simulation(
         | 
| 368 | 
             
                separate_agent_types=False,
         | 
| 369 | 
             
                n_agents=300,
         | 
|  | |
| 383 | 
             
                social_media_network_type_powerlaw_exponent=3,
         | 
| 384 | 
             
                social_media_network_type='Powerlaw',
         | 
| 385 | 
             
                use_social_media_network=False,
         | 
| 386 | 
            +
                social_media_factor=1.0,
         | 
| 387 | 
             
                rng_seed=None
         | 
| 388 | 
             
            ):
         | 
| 389 | 
             
                print(physical_network_type)
         | 
|  | |
| 390 | 
             
                networks = {}
         | 
| 391 |  | 
| 392 | 
             
                # Physical network
         | 
| 393 | 
             
                if physical_network_type == 'Fully Connected':
         | 
| 394 | 
             
                    G = nx.complete_graph(n_agents)
         | 
| 395 | 
             
                    networks['physical'] = {"network": G, "type": "physical", "positions": nx.circular_layout(G)}
         | 
|  | |
| 396 | 
             
                elif physical_network_type == "Powerlaw":
         | 
| 397 | 
             
                    s = nx.utils.powerlaw_sequence(n_agents, powerlaw_exponent)
         | 
| 398 | 
             
                    G = nx.expected_degree_graph(s, selfloops=False)
         | 
| 399 | 
             
                    G = nx.convert_node_labels_to_integers(ensure_neighbors(G))
         | 
| 400 | 
             
                    networks['physical'] = {"network": G, "type": "physical", "positions": nx.kamada_kawai_layout(G)}
         | 
|  | |
| 401 | 
             
                elif physical_network_type == "Random Geometric":
         | 
| 402 | 
            +
                    pts = np.random.rand(n_agents, 2)
         | 
| 403 | 
            +
                    G = graph_from_coordinates(pts, phys_network_radius)
         | 
| 404 | 
             
                    G = nx.convert_node_labels_to_integers(ensure_neighbors(G))
         | 
| 405 | 
            +
                    networks['physical'] = {"network": G, "type": "physical", "positions": pts}
         | 
| 406 |  | 
| 407 | 
             
                if introduce_physical_homophily_true_false:
         | 
| 408 | 
             
                    networks['physical']['homophily'] = physical_homophily
         | 
| 409 | 
            +
                networks['physical'].setdefault('network_data_to_keep', {})
         | 
| 410 |  | 
| 411 | 
             
                # Social media network
         | 
| 412 | 
             
                if use_social_media_network:
         | 
| 413 | 
             
                    if social_media_network_type == 'Fully Connected':
         | 
| 414 | 
             
                        G = nx.complete_graph(n_agents)
         | 
| 415 | 
             
                        networks['social_media'] = {"network": G, "type": "social_media", "positions": nx.circular_layout(G)}
         | 
|  | |
| 416 | 
             
                    elif social_media_network_type == "Powerlaw":
         | 
| 417 | 
             
                        s = nx.utils.powerlaw_sequence(n_agents, social_media_network_type_powerlaw_exponent)
         | 
| 418 | 
             
                        G = nx.expected_degree_graph(s, selfloops=False)
         | 
| 419 | 
             
                        G = nx.convert_node_labels_to_integers(ensure_neighbors(G))
         | 
| 420 | 
             
                        networks['social_media'] = {"network": G, "type": "social_media", "positions": nx.kamada_kawai_layout(G)}
         | 
|  | |
| 421 | 
             
                    elif social_media_network_type == "Random Geometric":
         | 
| 422 | 
            +
                        pts = np.random.rand(n_agents, 2)
         | 
| 423 | 
            +
                        G = graph_from_coordinates(pts, social_media_network_type_random_geometric_radius)
         | 
| 424 | 
             
                        G = nx.convert_node_labels_to_integers(ensure_neighbors(G))
         | 
| 425 | 
            +
                        networks['social_media'] = {"network": G, "type": "social_media", "positions": pts}
         | 
|  | |
| 426 | 
             
                    if introduce_social_media_homophily_true_false:
         | 
| 427 | 
             
                        networks['social_media']['homophily'] = social_media_homophily
         | 
| 428 | 
            +
                    networks['social_media'].setdefault('network_data_to_keep', {})
         | 
|  | |
|  | |
| 429 |  | 
| 430 | 
             
                model = PoliticalModel(
         | 
| 431 | 
             
                    n_agents,
         | 
|  | |
| 433 | 
             
                    share_regime_supporters,
         | 
| 434 | 
             
                    threshold,
         | 
| 435 | 
             
                    social_learning_factor=social_learning_factor,
         | 
| 436 | 
            +
                    social_media_factor=social_media_factor,
         | 
| 437 | 
             
                    half_life=half_life,
         | 
| 438 | 
             
                    print_agents=False,
         | 
| 439 | 
             
                    print_frequency=50,
         | 
| 440 | 
             
                    agent_reporters=True,
         | 
| 441 | 
            +
                    intervention_list=[],
         | 
| 442 | 
             
                    rng_seed=rng_seed
         | 
| 443 | 
             
                )
         | 
| 444 |  | 
|  | |
| 448 | 
             
                agent_df = model.datacollector.get_agent_vars_dataframe().reset_index()
         | 
| 449 | 
             
                agent_df_pivot = agent_df.pivot(index='Step', columns='AgentID', values='Estimation')
         | 
| 450 |  | 
| 451 | 
            +
                # Time series plot
         | 
| 452 | 
            +
                fig1, ax = plt.subplots(figsize=(12, 8))
         | 
| 453 | 
             
                if not separate_agent_types:
         | 
| 454 | 
            +
                    for col in agent_df_pivot.columns:
         | 
| 455 | 
            +
                        plt.plot(agent_df_pivot.index, agent_df_pivot[col], color='gray', alpha=0.1)
         | 
| 456 | 
            +
                    mean_est = agent_df_pivot.mean(axis=1)
         | 
| 457 | 
            +
                    plt.plot(mean_est.index, mean_est, color='black', linewidth=2)
         | 
| 458 | 
             
                else:
         | 
| 459 | 
             
                    colors = {1: '#d6a44b', 0: '#1b4968'}
         | 
| 460 | 
            +
                    for aid in agent_df_pivot.columns:
         | 
| 461 | 
            +
                        typ = agent_df.loc[agent_df['AgentID'] == aid, 'Dissident'].iloc[0]
         | 
| 462 | 
            +
                        plt.plot(agent_df_pivot.index, agent_df_pivot[aid], color=colors[typ], alpha=0.1)
         | 
| 463 | 
            +
                    for typ, color in colors.items():
         | 
| 464 | 
            +
                        mean_est = agent_df_pivot.loc[:, agent_df[agent_df['Dissident'] == typ]['AgentID']].mean(axis=1)
         | 
| 465 | 
            +
                        plt.plot(mean_est.index, mean_est, color=color, linewidth=2, label='Dissident' if typ == 1 else 'Supporter')
         | 
|  | |
|  | |
|  | |
| 466 | 
             
                    plt.legend(loc='lower right')
         | 
| 467 |  | 
| 468 | 
             
                plt.title('Agent Estimation Over Time', loc='right')
         | 
| 469 | 
             
                plt.xlabel('Time step')
         | 
| 470 | 
             
                plt.ylabel('Estimation')
         | 
|  | |
| 471 | 
             
                plt.savefig('run_plot.png', bbox_inches='tight', dpi=400, transparent=True)
         | 
| 472 | 
             
                run_plot = PIL.Image.open('run_plot.png').convert('RGBA')
         | 
| 473 |  | 
| 474 | 
             
                # Network plot
         | 
| 475 | 
             
                n_networks = len(networks)
         | 
| 476 | 
            +
                fig2, axs = plt.subplots(1, n_networks, figsize=(9.5 * n_networks, 8))
         | 
| 477 | 
             
                if n_networks == 1:
         | 
| 478 | 
             
                    axs = [axs]
         | 
| 479 |  | 
| 480 | 
            +
                estimations = {a.unique_id: a.estimation for a in model.schedule.agents}
         | 
| 481 | 
            +
                for idx, (net_id, net_dict) in enumerate(networks.items()):
         | 
| 482 | 
            +
                    net = net_dict['network']
         | 
| 483 | 
            +
                    nx.set_node_attributes(net, estimations, 'estimation')
         | 
| 484 | 
            +
                    pos = net_dict.get('positions', nx.kamada_kawai_layout(net))
         | 
| 485 | 
            +
                    node_colors = [estimations[node] for node in net.nodes]
         | 
| 486 | 
            +
                    axs[idx].set_title(f'Network: {net_id}', loc='right')
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 487 | 
             
                    nx.draw_networkx_nodes(
         | 
| 488 | 
            +
                        net, pos, node_size=50, node_color=node_colors,
         | 
| 489 | 
             
                        cmap=cmocean.tools.crop_by_percent(cmocean.cm.curl, 20, which='both', N=None),
         | 
| 490 | 
             
                        vmin=0, vmax=1, ax=axs[idx]
         | 
| 491 | 
             
                    )
         | 
| 492 | 
            +
                    nx.draw_networkx_edges(net, pos, alpha=0.3, ax=axs[idx])
         | 
|  | |
| 493 | 
             
                    sm = mpl.cm.ScalarMappable(
         | 
| 494 | 
             
                        cmap=cmocean.tools.crop_by_percent(cmocean.cm.curl, 20, which='both', N=None),
         | 
| 495 | 
             
                        norm=plt.Normalize(vmin=0, vmax=1)
         | 
| 496 | 
             
                    )
         | 
| 497 | 
             
                    sm.set_array([])
         | 
| 498 | 
            +
                    fig2.colorbar(sm, ax=axs[idx])
         | 
| 499 |  | 
| 500 | 
             
                plt.savefig('network_plot.png', bbox_inches='tight', dpi=400, transparent=True)
         | 
| 501 | 
             
                network_plot = PIL.Image.open('network_plot.png').convert('RGBA')
         | 
| 502 |  | 
| 503 | 
             
                return run_plot, network_plot
         | 
| 504 |  | 
| 505 | 
            +
            # -----------------------------
         | 
| 506 | 
            +
            # Gradio UI
         | 
| 507 | 
            +
            # -----------------------------
         | 
| 508 | 
             
            import gradio as gr
         | 
|  | |
| 509 |  | 
| 510 | 
             
            with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
         | 
| 511 | 
             
                with gr.Column():
         | 
|  | |
| 516 | 
             
                        with gr.Column():
         | 
| 517 | 
             
                            with gr.Group():
         | 
| 518 | 
             
                                separate_agent_types = gr.Checkbox(value=False, label="Separate agent types in plot")
         | 
| 519 | 
            +
                                n_agents_slider = gr.Slider(100, 500, step=10, label="Number of Agents", value=150)
         | 
| 520 | 
            +
                                share_regime_slider = gr.Slider(0.0, 1.0, step=0.01, label="Share of Regime Supporters", value=0.4)
         | 
| 521 | 
            +
                                threshold_slider = gr.Slider(0.0, 1.0, step=0.01, label="Threshold", value=0.5)
         | 
| 522 | 
            +
                                social_learning_slider = gr.Slider(0.0, 2.0, step=0.1, label="Social Learning Factor", value=1.0)
         | 
| 523 | 
            +
                                steps_slider = gr.Slider(10, 100, step=5, label="Simulation Steps", value=40)
         | 
| 524 | 
            +
                                half_life_slider = gr.Slider(5, 50, step=5, label="Half-Life", value=20)
         | 
|  | |
| 525 |  | 
| 526 | 
             
                                # Physical network settings
         | 
| 527 | 
             
                                with gr.Group():
         | 
| 528 | 
             
                                    gr.Markdown("""**Physical Network Settings:**""")
         | 
| 529 | 
             
                                    introduce_physical_homophily_true_false = gr.Checkbox(value=False, label="Stipulate Homophily")
         | 
|  | |
| 530 | 
             
                                    with gr.Group(visible=False) as homophily_group:
         | 
| 531 | 
             
                                        physical_homophily = gr.Slider(0, 1, label="Homophily", info='How much homophily to stipulate.')
         | 
|  | |
| 532 | 
             
                                    def update_homophily_group_visibility(checkbox_state):
         | 
| 533 | 
             
                                        return {homophily_group: gr.Group(visible=checkbox_state)}
         | 
|  | |
| 534 | 
             
                                    introduce_physical_homophily_true_false.change(
         | 
| 535 | 
             
                                        update_homophily_group_visibility,
         | 
| 536 | 
             
                                        inputs=introduce_physical_homophily_true_false,
         | 
|  | |
| 539 |  | 
| 540 | 
             
                                    physical_network_type = gr.Dropdown(label="Physical Network Type", value="Fully Connected",
         | 
| 541 | 
             
                                                                        choices=["Fully Connected", "Random Geometric", "Powerlaw"])
         | 
|  | |
| 542 | 
             
                                    with gr.Group(visible=True) as physical_network_type_fully_connected_group:
         | 
| 543 | 
             
                                        gr.Markdown("""""")
         | 
|  | |
| 544 | 
             
                                    with gr.Group(visible=False) as physical_network_type_random_geometric_group:
         | 
| 545 | 
            +
                                        physical_network_type_random_geometric_radius = gr.Slider(0.0, 0.5, label="Radius")
         | 
|  | |
| 546 | 
             
                                    with gr.Group(visible=False) as physical_network_type_powerlaw_group:
         | 
| 547 | 
            +
                                        physical_network_type_random_geometric_powerlaw_exponent = gr.Slider(0.0, 5.2, label="Powerlaw Exponent")
         | 
|  | |
| 548 | 
             
                                    def update_sliders(option):
         | 
| 549 | 
             
                                        return {
         | 
| 550 | 
             
                                            physical_network_type_fully_connected_group: gr.Group(visible=option == "Fully Connected"),
         | 
| 551 | 
             
                                            physical_network_type_random_geometric_group: gr.Group(visible=option == "Random Geometric"),
         | 
| 552 | 
             
                                            physical_network_type_powerlaw_group: gr.Group(visible=option == "Powerlaw")
         | 
| 553 | 
             
                                        }
         | 
|  | |
| 554 | 
             
                                    physical_network_type.change(
         | 
| 555 | 
             
                                        update_sliders,
         | 
| 556 | 
             
                                        inputs=physical_network_type,
         | 
| 557 | 
            +
                                        outputs=[
         | 
| 558 | 
            +
                                            physical_network_type_fully_connected_group,
         | 
| 559 | 
            +
                                            physical_network_type_random_geometric_group,
         | 
| 560 | 
            +
                                            physical_network_type_powerlaw_group
         | 
| 561 | 
            +
                                        ]
         | 
| 562 | 
             
                                    )
         | 
| 563 |  | 
| 564 | 
             
                            # Social media settings
         | 
| 565 | 
             
                            use_social_media_network = gr.Checkbox(value=False, label="Use social media network")
         | 
| 566 | 
             
                            with gr.Group(visible=False) as social_media_group:
         | 
| 567 | 
             
                                gr.Markdown("""**Social Media Network Settings:**""")
         | 
|  | |
| 568 | 
             
                                social_media_factor = gr.Slider(0, 2, label="Social Media Factor",
         | 
| 569 | 
             
                                                                info='Weight of social media vs learning in the real world.',
         | 
| 570 | 
             
                                                                value=1.0)
         | 
| 571 | 
             
                                introduce_social_media_homophily_true_false = gr.Checkbox(value=False, label="Stipulate Homophily")
         | 
|  | |
| 572 | 
             
                                with gr.Group(visible=False) as social_media_homophily_group:
         | 
| 573 | 
             
                                    social_media_homophily = gr.Slider(0, 1, label="Homophily", info='How much homophily to stipulate in social media network.')
         | 
|  | |
| 574 | 
             
                                def update_social_media_homophily_group_visibility(checkbox_state):
         | 
| 575 | 
             
                                    return {social_media_homophily_group: gr.Group(visible=checkbox_state)}
         | 
|  | |
| 576 | 
             
                                introduce_social_media_homophily_true_false.change(
         | 
| 577 | 
             
                                    update_social_media_homophily_group_visibility,
         | 
| 578 | 
             
                                    inputs=introduce_social_media_homophily_true_false,
         | 
| 579 | 
             
                                    outputs=social_media_homophily_group
         | 
| 580 | 
             
                                )
         | 
|  | |
| 581 | 
             
                                social_media_network_type = gr.Dropdown(label="Social Media Network Type", value="Fully Connected",
         | 
| 582 | 
             
                                                                        choices=["Fully Connected", "Random Geometric", "Powerlaw"])
         | 
|  | |
| 583 | 
             
                                with gr.Group(visible=True) as social_media_network_type_fully_connected_group:
         | 
| 584 | 
             
                                    gr.Markdown("""""")
         | 
|  | |
| 585 | 
             
                                with gr.Group(visible=False) as social_media_network_type_random_geometric_group:
         | 
| 586 | 
            +
                                    social_media_network_type_random_geometric_radius = gr.Slider(0.0, 0.5, label="Radius")
         | 
|  | |
| 587 | 
             
                                with gr.Group(visible=False) as social_media_network_type_powerlaw_group:
         | 
| 588 | 
            +
                                    social_media_network_type_powerlaw_exponent = gr.Slider(0.0, 5.2, label="Powerlaw Exponent")
         | 
|  | |
| 589 | 
             
                                def update_social_media_network_sliders(option):
         | 
| 590 | 
             
                                    return {
         | 
| 591 | 
             
                                        social_media_network_type_fully_connected_group: gr.Group(visible=option == "Fully Connected"),
         | 
| 592 | 
             
                                        social_media_network_type_random_geometric_group: gr.Group(visible=option == "Random Geometric"),
         | 
| 593 | 
             
                                        social_media_network_type_powerlaw_group: gr.Group(visible=option == "Powerlaw")
         | 
| 594 | 
             
                                    }
         | 
|  | |
| 595 | 
             
                                social_media_network_type.change(
         | 
| 596 | 
             
                                    update_social_media_network_sliders,
         | 
| 597 | 
             
                                    inputs=social_media_network_type,
         | 
| 598 | 
            +
                                    outputs=[
         | 
| 599 | 
            +
                                        social_media_network_type_fully_connected_group,
         | 
| 600 | 
            +
                                        social_media_network_type_random_geometric_group,
         | 
| 601 | 
            +
                                        social_media_network_type_powerlaw_group
         | 
| 602 | 
            +
                                    ]
         | 
| 603 | 
             
                                )
         | 
|  | |
| 604 | 
             
                            def update_social_media_group_visibility(checkbox_state):
         | 
| 605 | 
             
                                return {social_media_group: gr.Group(visible=checkbox_state)}
         | 
|  | |
| 606 | 
             
                            use_social_media_network.change(
         | 
| 607 | 
             
                                update_social_media_group_visibility,
         | 
| 608 | 
             
                                inputs=use_social_media_network,
         | 
|  | |
| 615 | 
             
                            network_output = gr.Image(label="Networks")
         | 
| 616 |  | 
| 617 | 
             
                    def run_simulation_and_plot(*args):
         | 
| 618 | 
            +
                        return run_and_plot_simulation(*args)
         | 
|  | |
| 619 |  | 
| 620 | 
             
                    button.click(
         | 
| 621 | 
             
                        run_simulation_and_plot,
         | 
|  | |
| 638 | 
             
                            social_media_network_type_powerlaw_exponent,
         | 
| 639 | 
             
                            social_media_network_type,
         | 
| 640 | 
             
                            use_social_media_network,
         | 
| 641 | 
            +
                            social_media_factor,
         | 
| 642 | 
             
                        ],
         | 
| 643 | 
             
                        outputs=[plot_output, network_output]
         | 
| 644 | 
             
                    )
         | 
| 645 |  | 
|  | |
| 646 | 
             
            if __name__ == "__main__":
         | 
| 647 | 
             
                demo.launch(debug=True)
         |