MaxBlumenfeld
commited on
Commit
·
0fb2bdc
1
Parent(s):
bb6a531
trying with just base model
Browse files
app.py
CHANGED
@@ -1,124 +1,173 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaConfig
|
3 |
-
import gradio as gr
|
4 |
|
5 |
|
6 |
-
# Model IDs from Hugging Face Hub
|
7 |
-
base_model_id = "HuggingFaceTB/SmolLM2-135M"
|
8 |
-
instruct_model_id = "MaxBlumenfeld/smollm2-135m-bootleg-instruct-01"
|
9 |
|
10 |
-
# Load tokenizer
|
11 |
-
base_tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
12 |
|
13 |
-
# Load models with explicit LLaMA architecture
|
14 |
-
base_model = LlamaForCausalLM.from_pretrained(base_model_id)
|
15 |
-
instruct_model = LlamaForCausalLM.from_pretrained(instruct_model_id)
|
16 |
|
17 |
-
def generate_response(model, tokenizer, message, temperature=0.5, max_length=200, system_prompt="", is_instruct=False):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
def chat(message, temperature, max_length, system_prompt):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
|
78 |
-
# Create Gradio interface
|
79 |
-
with gr.Blocks() as demo:
|
80 |
-
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
-
|
|
|
|
1 |
+
# import torch
|
2 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaConfig
|
3 |
+
# import gradio as gr
|
4 |
|
5 |
|
6 |
+
# # Model IDs from Hugging Face Hub
|
7 |
+
# base_model_id = "HuggingFaceTB/SmolLM2-135M"
|
8 |
+
# instruct_model_id = "MaxBlumenfeld/smollm2-135m-bootleg-instruct-01"
|
9 |
|
10 |
+
# # Load tokenizer
|
11 |
+
# base_tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
12 |
|
13 |
+
# # Load models with explicit LLaMA architecture
|
14 |
+
# base_model = LlamaForCausalLM.from_pretrained(base_model_id)
|
15 |
+
# instruct_model = LlamaForCausalLM.from_pretrained(instruct_model_id)
|
16 |
|
17 |
+
# def generate_response(model, tokenizer, message, temperature=0.5, max_length=200, system_prompt="", is_instruct=False):
|
18 |
+
# # Prepare input based on model type
|
19 |
+
# if is_instruct:
|
20 |
+
# if system_prompt:
|
21 |
+
# full_prompt = f"{system_prompt}\n\nHuman: {message}\nAssistant:"
|
22 |
+
# else:
|
23 |
+
# full_prompt = f"Human: {message}\nAssistant:"
|
24 |
+
# else:
|
25 |
+
# # For base model, use simpler prompt format
|
26 |
+
# full_prompt = message
|
27 |
|
28 |
+
# inputs = tokenizer(full_prompt, return_tensors="pt")
|
29 |
|
30 |
+
# with torch.no_grad():
|
31 |
+
# outputs = model.generate(
|
32 |
+
# inputs.input_ids,
|
33 |
+
# max_length=max_length,
|
34 |
+
# do_sample=True,
|
35 |
+
# temperature=temperature,
|
36 |
+
# top_k=50,
|
37 |
+
# top_p=0.95,
|
38 |
+
# num_return_sequences=1,
|
39 |
+
# pad_token_id=tokenizer.eos_token_id # Add padding token
|
40 |
+
# )
|
41 |
|
42 |
+
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
|
44 |
+
# if is_instruct:
|
45 |
+
# try:
|
46 |
+
# response = response.split("Assistant:")[-1].strip()
|
47 |
+
# except:
|
48 |
+
# pass
|
49 |
+
# else:
|
50 |
+
# response = response[len(full_prompt):].strip()
|
51 |
|
52 |
+
# return response
|
53 |
|
54 |
+
# def chat(message, temperature, max_length, system_prompt):
|
55 |
+
# # Generate responses from both models
|
56 |
+
# base_response = generate_response(
|
57 |
+
# base_model,
|
58 |
+
# base_tokenizer,
|
59 |
+
# message,
|
60 |
+
# temperature,
|
61 |
+
# max_length,
|
62 |
+
# system_prompt,
|
63 |
+
# is_instruct=False
|
64 |
+
# )
|
65 |
|
66 |
+
# instruct_response = generate_response(
|
67 |
+
# instruct_model,
|
68 |
+
# base_tokenizer,
|
69 |
+
# message,
|
70 |
+
# temperature,
|
71 |
+
# max_length,
|
72 |
+
# system_prompt,
|
73 |
+
# is_instruct=True
|
74 |
+
# )
|
75 |
|
76 |
+
# return base_response, instruct_response
|
77 |
|
78 |
+
# # Create Gradio interface
|
79 |
+
# with gr.Blocks() as demo:
|
80 |
+
# gr.Markdown("# SmolLM2-135M Comparison Demo")
|
81 |
+
# gr.Markdown("Compare responses between base and fine-tuned versions of SmolLM2-135M")
|
82 |
|
83 |
+
# with gr.Row():
|
84 |
+
# with gr.Column():
|
85 |
+
# message_input = gr.Textbox(label="Input Message")
|
86 |
+
# system_prompt = gr.Textbox(
|
87 |
+
# label="System Prompt (Optional)",
|
88 |
+
# placeholder="Set context or personality for the model",
|
89 |
+
# lines=3
|
90 |
+
# )
|
91 |
|
92 |
+
# with gr.Column():
|
93 |
+
# temperature = gr.Slider(
|
94 |
+
# minimum=0.1,
|
95 |
+
# maximum=2.0,
|
96 |
+
# value=0.5,
|
97 |
+
# label="Temperature"
|
98 |
+
# )
|
99 |
+
# max_length = gr.Slider(
|
100 |
+
# minimum=50,
|
101 |
+
# maximum=500,
|
102 |
+
# value=200,
|
103 |
+
# step=10,
|
104 |
+
# label="Max Length"
|
105 |
+
# )
|
106 |
|
107 |
+
# with gr.Row():
|
108 |
+
# with gr.Column():
|
109 |
+
# gr.Markdown("### Base Model Response")
|
110 |
+
# base_output = gr.Textbox(label="Base Model (SmolLM2-135M)", lines=5)
|
111 |
|
112 |
+
# with gr.Column():
|
113 |
+
# gr.Markdown("### Bootleg Instruct Model Response")
|
114 |
+
# instruct_output = gr.Textbox(label="Fine-tuned Model", lines=5)
|
115 |
|
116 |
+
# submit_btn = gr.Button("Generate Responses")
|
117 |
+
# submit_btn.click(
|
118 |
+
# fn=chat,
|
119 |
+
# inputs=[message_input, temperature, max_length, system_prompt],
|
120 |
+
# outputs=[base_output, instruct_output]
|
121 |
+
# )
|
122 |
+
|
123 |
+
# if __name__ == "__main__":
|
124 |
+
# demo.launch()
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
129 |
+
import torch
|
130 |
+
import gradio as gr
|
131 |
+
|
132 |
+
model_id = "MaxBlumenfeld/smollm2-135m"
|
133 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
134 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
135 |
+
|
136 |
+
def generate_response(message, temperature=0.7, max_length=200):
|
137 |
+
prompt = f"Human: {message}\nAssistant:"
|
138 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
139 |
+
|
140 |
+
with torch.no_grad():
|
141 |
+
outputs = model.generate(
|
142 |
+
inputs.input_ids,
|
143 |
+
max_length=max_length,
|
144 |
+
temperature=temperature,
|
145 |
+
do_sample=True,
|
146 |
+
pad_token_id=tokenizer.eos_token_id
|
147 |
+
)
|
148 |
+
|
149 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
150 |
+
return response.split("Assistant:")[-1].strip()
|
151 |
+
|
152 |
+
with gr.Blocks() as demo:
|
153 |
+
gr.Markdown("# SmolLM2 Bootleg Instruct Chat")
|
154 |
+
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
+
message = gr.Textbox(label="Message")
|
158 |
+
temp = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature")
|
159 |
+
max_len = gr.Slider(minimum=50, maximum=500, value=200, label="Max Length")
|
160 |
+
submit = gr.Button("Send")
|
161 |
+
|
162 |
+
with gr.Column():
|
163 |
+
output = gr.Textbox(label="Response")
|
164 |
+
|
165 |
+
submit.click(
|
166 |
+
generate_response,
|
167 |
+
inputs=[message, temp, max_len],
|
168 |
+
outputs=output
|
169 |
+
)
|
170 |
|
171 |
if __name__ == "__main__":
|
172 |
+
demo.launch()
|
173 |
+
|