Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import numpy as np | |
import math | |
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp | |
import einops | |
from huggingface_hub import PyTorchModelHubMixin | |
import torch.utils.checkpoint as checkpoint | |
from transformers import PreTrainedModel | |
import random | |
class MelPatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, n_mels, n_frames, patch_size=16, in_chans=1, embed_dim=768): | |
super().__init__() | |
num_patches = (n_mels // patch_size) * (n_frames // patch_size) | |
self.patch_size = patch_size | |
self.num_patches = int(num_patches) | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class SelfAttention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
qk_norm: bool = False, | |
attn_drop: float = 0., | |
proj_drop: float = 0., | |
norm_layer: nn.Module = nn.LayerNorm, | |
is_causal: bool = False, | |
) -> None: | |
super().__init__() | |
assert dim % num_heads == 0, 'dim should be divisible by num_heads' | |
self.is_causal = is_causal | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) | |
q, k = self.q_norm(q), self.k_norm(k) | |
x = torch.nn.functional.scaled_dot_product_attention( | |
q, k, v, | |
dropout_p=self.attn_drop.p if self.training else 0., | |
is_causal=self.is_causal | |
) | |
x = x.transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class CrossAttention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
attn_drop=0., | |
proj_drop=0., | |
mask_attn=False, | |
): | |
super().__init__() | |
self.mask_attn = mask_attn | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = head_dim ** -0.5 | |
self.wq = nn.Linear(dim, dim, bias=qkv_bias) | |
self.wkv = nn.Linear(dim, dim*2, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, cond): | |
B, N, C = x.shape | |
q = self.wq(x) | |
q = einops.rearrange(q, 'B N (H D) -> B H N D', H=self.num_heads) | |
kv = self.wkv(cond) # BMD | |
kv = einops.rearrange(kv, 'B N (K H D) ->K B H N D', H=self.num_heads, K=2) | |
k = kv[0] | |
v = kv[1] | |
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) | |
x = einops.rearrange(x, 'B H N D -> B N (H D)') | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
def temporalModulate(x, shift, scale): | |
""" | |
Modulate the input tensor x with the given shift and scale tensors. | |
:param x: the input tensor to modulate with shape (B, T, L, D). | |
:param shift: the shift tensor with shape (B, T, D). | |
:param scale: the scale tensor with shape (B, T, D). | |
""" | |
return x * (1 + scale.unsqueeze(2)) + shift.unsqueeze(2) | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class AudioEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, n_mels, hidden_size): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(n_mels, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
# TODO: Activation? | |
def forward(self, a): | |
a = self.mlp(a) | |
return a | |
def init_weights(self): | |
nn.init.xavier_uniform_(self.mlp[0].weight) | |
nn.init.constant_(self.mlp[0].bias, 0) | |
nn.init.xavier_uniform_(self.mlp[2].weight) | |
nn.init.constant_(self.mlp[2].bias, 0) | |
class LabelEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, num_classes, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
def token_drop(self, labels, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
labels = torch.where(drop_ids, self.num_classes, labels) | |
return labels | |
def forward(self, labels, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
labels = self.token_drop(labels, force_drop_ids) | |
embeddings = self.embedding_table(labels) | |
return embeddings | |
################################################################################# | |
# Core FLAV Model # | |
################################################################################# | |
class FLAVBlock(nn.Module): | |
""" | |
A FLAV block with adaptive layer norm zero (adaLN-Zero) conditioning. | |
""" | |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, grad_ckpt=False, causal_attn=False, **block_kwargs): | |
super().__init__() | |
self.video_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.audio_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
# self.video_audio_attn = SelfAttention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) | |
self.video_spatial_attn = SelfAttention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) | |
self.video_temporal_attn = SelfAttention(hidden_size, num_heads=num_heads, qkv_bias=True, is_causal=causal_attn, **block_kwargs) | |
self.audio_spatial_attn = SelfAttention(hidden_size, num_heads=num_heads, qkv_bias=True, is_causal=causal_attn, **block_kwargs) | |
# self.audio_temporal_attn = SelfAttention(hidden_size, num_heads=num_heads, qkv_bias=True, is_causal=causal_attn, **block_kwargs) | |
self.video_norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.audio_norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.video_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.audio_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
self.video_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) | |
self.audio_mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) | |
self.video_adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 6 * hidden_size, bias=True) | |
) | |
self.audio_adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 3 * hidden_size, bias=True) | |
) | |
self.video_scale = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 3 * hidden_size, bias=True) | |
) | |
self.audio_scale = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 3 * hidden_size, bias=True) | |
) | |
self.v_avg_proj = nn.Sequential( | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.a_avg_proj = nn.Sequential( | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.grad_ckpt = grad_ckpt | |
def forward(self,v, a, v_c, a_c): | |
if self.grad_ckpt: | |
return checkpoint.checkpoint(self._forward, v, a, v_c, a_c, use_reentrant=False) | |
else: | |
return self._forward(v, a, v_c, a_c) | |
def _forward(self, v, a, v_c, a_c): | |
""" | |
v: Size of (B, T, Lv, D) | |
a: Size of (B, T, La, D) | |
v_c: Size of (B, T, D) | |
a_c: Size of (B, T, D) | |
""" | |
video_shift_msa, video_scale_msa, video_gate_msa, video_shift_tmsa, video_scale_tmsa, video_gate_tmsa = self.video_adaLN_modulation(v_c).chunk(6, dim=-1) | |
# audio_shift_msa, audio_scale_msa, audio_gate_msa, audio_shift_tmsa, audio_scale_tmsa, audio_gate_tmsa = self.audio_adaLN_modulation(a_c).chunk(6, dim=-1) | |
audio_shift_msa, audio_scale_msa, audio_gate_msa = self.audio_adaLN_modulation(a_c).chunk(3, dim=-1) | |
B, T, L, D = v.shape | |
v_att = temporalModulate(self.video_norm1(v), video_shift_msa, video_scale_msa) | |
v_att = einops.rearrange(v_att, 'B T L D -> (B T) L D') | |
v_att = v + video_gate_msa.unsqueeze(2)*(self.video_spatial_attn(v_att).view(B, T, L, D)) | |
v = v_att | |
v_att = temporalModulate(self.video_norm2(v_att), video_shift_tmsa, video_scale_tmsa) | |
v_att = einops.rearrange(v_att, 'B T L D -> (B L) T D', T=T) | |
v_att = einops.rearrange(self.video_temporal_attn(v_att), "(B L) T D -> B T L D", B=B) | |
v = v + video_gate_tmsa.unsqueeze(2)*v_att | |
a_att = temporalModulate(self.audio_norm1(a), audio_shift_msa, audio_scale_msa) | |
a_att = einops.rearrange(a_att, 'B T L D -> B (T L) D') | |
a_att = a + audio_gate_msa.unsqueeze(2)*(self.audio_spatial_attn(a_att).view(B, T, -1, D)) | |
a = a_att | |
a_avg = self.a_avg_proj(a.mean(dim=2)) # B T D | |
v_avg = self.v_avg_proj(v.mean(dim=2)) # B T D | |
v_avg += a_c | |
a_avg += v_c | |
scale_v, shift_v, gate_v = self.video_scale(a_avg).chunk(3, dim=-1) | |
scale_a, shift_a, gate_a = self.audio_scale(v_avg).chunk(3, dim=-1) | |
v = v + gate_v.unsqueeze(2) * self.video_mlp(temporalModulate(self.video_norm3(v), shift_v, scale_v)) | |
a = a + gate_a.unsqueeze(2) * self.audio_mlp(temporalModulate(self.audio_norm3(a), shift_a, scale_a)) | |
return v, a | |
def _spatial_attn(self, x, b_size, attn_func): | |
x = einops.rearrange(x, "(B N) T D -> (B T) N D", B=b_size) | |
x = attn_func(x) | |
x = einops.rearrange(x, "(B T) N D -> (B N) T D", B=b_size) | |
return x | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of FLAV. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) | |
x = temporalModulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class FLAV(nn.Module, PyTorchModelHubMixin): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
latent_size=None, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
predict_frames = 1, | |
grad_ckpt = False, | |
n_mels=256, | |
audio_fr = 16000, | |
causal_attn = False, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = in_channels | |
self.patch_size = patch_size | |
self.num_heads = num_heads | |
self.predict_frames = predict_frames | |
self.grad_ckpt = grad_ckpt | |
self.n_mels = n_mels | |
self.audio_fr = audio_fr | |
self.latent_size = latent_size # T H W | |
self.num_classes = num_classes | |
self.v_embedder = PatchEmbed(latent_size, patch_size, in_channels, hidden_size, bias=True) | |
self.a_embedder = nn.Linear(n_mels, hidden_size, bias=True) | |
self.video_t_embedder = TimestepEmbedder(hidden_size) | |
self.audio_t_embedder = TimestepEmbedder(hidden_size) | |
if self.num_classes > 0: | |
self.video_y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob) | |
self.audio_y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob) | |
num_patches = self.v_embedder.num_patches | |
self.video_spatial_pos_embed = nn.Parameter(torch.zeros(1, 1, num_patches, hidden_size), requires_grad=True) | |
self.video_temporal_pos_embed = nn.Parameter(torch.zeros(1, self.predict_frames, 1, hidden_size), requires_grad=True) | |
self.audio_spatial_pos_embed = nn.Parameter(torch.zeros(1, 1, 10, hidden_size), requires_grad=True) | |
self.audio_temporal_pos_embed = nn.Parameter(torch.zeros(1, self.predict_frames, 1, hidden_size), requires_grad=True) | |
self.blocks = nn.ModuleList([ | |
FLAVBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, grad_ckpt=grad_ckpt, causal_attn=causal_attn) for _ in range(depth) | |
]) | |
self.video_final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) | |
self.audio_final_layer = FinalLayer(hidden_size, 1, n_mels) | |
self.initialize_weights() | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.v_embedder.proj.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.v_embedder.proj.bias, 0) | |
if self.num_classes > 0: | |
nn.init.normal_(self.video_y_embedder.embedding_table.weight, std=0.02) | |
nn.init.normal_(self.audio_y_embedder.embedding_table.weight, std=0.02) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.video_t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.video_t_embedder.mlp[2].weight, std=0.02) | |
nn.init.normal_(self.audio_t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.audio_t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in FLAV blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.video_adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.video_adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(block.audio_adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.audio_adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(block.video_scale[-1].weight, 0) | |
nn.init.constant_(block.video_scale[-1].bias, 0) | |
nn.init.constant_(block.audio_scale[-1].weight, 0) | |
nn.init.constant_(block.audio_scale[-1].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.video_final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.video_final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.video_final_layer.linear.weight, 0) | |
nn.init.constant_(self.video_final_layer.linear.bias, 0) | |
nn.init.constant_(self.audio_final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.audio_final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.audio_final_layer.linear.weight, 0) | |
nn.init.constant_(self.audio_final_layer.linear.bias, 0) | |
def unpatchify(self, x): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, C, H, W) | |
""" | |
c = self.out_channels | |
p = self.v_embedder.patch_size[0] | |
h = w = int(x.shape[1] ** 0.5) | |
assert h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
x = torch.einsum('nhwpqc->nchpwq', x) | |
imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) | |
return imgs | |
def _apply_rnd_mask(self, input, mask, device="cuda"): | |
input_rnd = torch.rand(input[0].shape).unsqueeze(0).to(device=device)*2 - 1 | |
return self._apply_mask(input, mask, input_rnd) | |
def _apply_zero_mask(self, input, mask, device="cuda"): | |
input_zero= torch.zeros(input[0].shape).unsqueeze(0).to(device=device) | |
return self._apply_mask(input, mask, input_zero) | |
def _get_frames_mask(self, bs): | |
""" | |
bs: batch size | |
returns a boolean mask to be applied to condition frames | |
to mask a selected number of random frames | |
""" | |
fmask = np.full(self.cond_frames*bs, False) | |
frames = list(range(self.cond_frames)) | |
for b in range(bs): | |
if random.randint(0, 100) < self.mask_freq: | |
sub_frames = random.sample(frames, min(self.cond_frames, self.frames_to_mask)) | |
idxs = [f+(b*self.cond_frames) for f in sub_frames] | |
fmask[idxs] = True | |
return fmask | |
def _get_batch_mask(self, bs): | |
""" | |
bs: batch size | |
returns a boolean mask to be applied to condition frames | |
to mask a random number of condition sequences in a batch | |
""" | |
rnd = np.random.rand(bs) | |
bmask= rnd < self.batch_mask_freq/100 | |
bmask = np.repeat(bmask, self.cond_frames) | |
return bmask | |
def _apply_mask(self, input, mask, values): | |
input[mask] = values | |
return input | |
def audio_unpatchify(self, x): | |
""" | |
x: (N, T, patch_size * C) | |
audio: (N, N_mels, frames) | |
""" | |
c = 1 | |
p = self.audio_patch_size | |
h = int(self.n_mels//p) | |
w = int((self.audio_fr/1600)/p) | |
assert h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
x = torch.einsum('nhwpqc->nchpwq', x) | |
audio = x.reshape(shape=(x.shape[0], c, h * p, w * p)) | |
return audio | |
def forward(self, v, a, t, y): | |
""" | |
Forward pass of FLAV. | |
v: (B, T, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
a: (B, 1, n_bins, T) # mel spectrogram of audio | |
t: (B, T) tensor of diffusion timesteps | |
y: (B,) tensor of class labels | |
""" | |
### Video | |
B, T, C, H, W = v.shape | |
v = einops.rearrange(v, 'B T C H W -> (B T) C H W') | |
v = self.v_embedder(v) | |
v = einops.rearrange(v, '(B T) L D -> B T L D', T=T) | |
v = v + self.video_temporal_pos_embed + self.video_spatial_pos_embed | |
### Audio | |
a = einops.rearrange(a, "B T C N F -> B T C F N").squeeze(2) | |
a = self.a_embedder(a) | |
a = a + self.audio_temporal_pos_embed + self.audio_spatial_pos_embed | |
### Conditioning | |
t = t.view(-1) # B T -> (B T) | |
v_t = self.video_t_embedder(t) # (B, T, D) | |
v_t = v_t.view(B, T, -1) # (B T) D -> B T D | |
if self.num_classes > 0: | |
v_y = self.video_y_embedder(y, self.training) # (B, D) | |
v_y = v_y.unsqueeze(1).expand(-1, T, -1) # (B, T, D) | |
v_c = (v_t + v_y) if self.num_classes > 0 else v_t # (B, T, D) | |
a_t = self.audio_t_embedder(t) # (B, T, D) | |
a_t = a_t.view(B, T, -1) | |
if self.num_classes > 0: | |
a_y = self.audio_y_embedder(y, self.training) | |
a_y = a_y.unsqueeze(1).expand(-1, T, -1) | |
a_c = (a_t + a_y) if self.num_classes > 0 else a_t # (B, T, D) | |
for block in self.blocks: | |
v, a = block(v, a, v_c, a_c) # (B, T, D) | |
v = self.video_final_layer(v, v_c) # (B, T, patch_size ** 2 * out_channels), (B, T, L) | |
a = self.audio_final_layer(a, a_c) | |
v = einops.rearrange(v, 'B T L D -> (B T) L D', T = T) | |
v = self.unpatchify(v) # (B, out_channels, H, W) | |
v = einops.rearrange(v, '(B T) C H W -> B T C H W', T = T) | |
a = einops.rearrange(a, 'B T F N -> B T N F', T = T).unsqueeze(2) | |
return v, a | |
def forward_with_cfg(self, v, a, t, y, cfg_scale): | |
""" | |
Forward pass of FLAV, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
v_combined = torch.cat([v, v], dim=0) | |
a_combined = torch.cat([a, a], dim=0) | |
y_null = torch.tensor([self.num_classes]*v.shape[0], device=v.device) | |
y = torch.cat([y, y_null], dim=0) | |
t = torch.cat([t, t], dim=0) | |
v_model_out, a_model_out = self.forward(v_combined, a_combined, t, y) | |
v_eps = v_model_out | |
a_eps = a_model_out | |
v_cond_eps, v_uncond_eps = torch.split(v_eps, len(v_eps) // 2, dim=0) | |
v_eps = v_uncond_eps + cfg_scale * (v_cond_eps - v_uncond_eps) | |
a_cond_eps, a_uncond_eps = torch.split(a_eps, len(a_eps) // 2, dim=0) | |
a_eps = a_uncond_eps + cfg_scale * (a_cond_eps - a_uncond_eps) | |
return v_eps, a_eps | |
################################################################################# | |
# Sine/Cosine Positional Embedding Functions # | |
################################################################################# | |
# https://github.com/facebookresearch/mae/blob/main/util/video_pos_embed.py | |
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0): | |
""" | |
grid_size: int of the grid height and width | |
return: | |
video_pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
grid_h = np.arange(grid_size, dtype=np.float32) | |
grid_w = np.arange(grid_size, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_size, grid_size]) | |
video_pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token and extra_tokens > 0: | |
video_pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), video_pos_embed], axis=0) | |
return video_pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2. | |
omega = 1. / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
################################################################################# | |
# FLAV Configs # | |
################################################################################# | |
def FLAV_XL_2(**kwargs): | |
return FLAV(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs) | |
def FLAV_XL_4(**kwargs): | |
return FLAV(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs) | |
def FLAV_XL_8(**kwargs): | |
return FLAV(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) | |
# def FLAV_L_2(**kwargs): | |
# return FLAV(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) | |
def FLAV_L_1(**kwargs): | |
return FLAV(depth=24, hidden_size=1024, patch_size=1, num_heads=16, **kwargs) | |
def FLAV_L_2(**kwargs): | |
return FLAV(depth=20, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) | |
def FLAV_L_4(**kwargs): | |
return FLAV(depth=20, hidden_size=1024, patch_size=4, num_heads=16, **kwargs) | |
def FLAV_L_8(**kwargs): | |
return FLAV(depth=20, hidden_size=1024, patch_size=8, num_heads=16, **kwargs) | |
# def FLAV_B_2(**kwargs): | |
# return FLAV(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) | |
def FLAV_B_1(**kwargs): | |
return FLAV(depth=12, hidden_size=768, patch_size=1, num_heads=12, **kwargs) | |
def FLAV_B_2(**kwargs): | |
return FLAV(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) | |
def FLAV_B_4(**kwargs): | |
return FLAV(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) | |
def FLAV_B_8(**kwargs): | |
return FLAV(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) | |
def FLAV_S_2(**kwargs): | |
return FLAV(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) | |
def FLAV_S_4(**kwargs): | |
return FLAV(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) | |
def FLAV_S_8(**kwargs): | |
return FLAV(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) | |
FLAV_models = { | |
'FLAV-XL/2': FLAV_XL_2, 'FLAV-XL/4': FLAV_XL_4, 'FLAV-XL/8': FLAV_XL_8, | |
'FLAV-L/1' : FLAV_L_1, 'FLAV-L/2': FLAV_L_2, 'FLAV-L/4': FLAV_L_4, 'FLAV-L/8': FLAV_L_8, | |
'FLAV-B/1' : FLAV_B_1, 'FLAV-B/2': FLAV_B_2, 'FLAV-B/4': FLAV_B_4, 'FLAV-B/8': FLAV_B_8, | |
'FLAV-S/2' : FLAV_S_2, 'FLAV-S/4': FLAV_S_4, 'FLAV-S/8': FLAV_S_8, | |
} | |