Spaces:
Runtime error
Runtime error
import gradio as gr | |
from qdrant_client import models, QdrantClient | |
from sentence_transformers import SentenceTransformer | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.callbacks.manager import CallbackManager | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from ctransformers import AutoModelForCausalLM | |
# Load the embedding model | |
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1') | |
print("Embedding model loaded...") | |
# Load the LLM | |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
llm = AutoModelForCausalLM.from_pretrained( | |
"TheBloke/Llama-2-7B-Chat-GGUF", | |
model_file="llama-2-7b-chat.Q3_K_S.gguf", | |
model_type="llama", | |
temperature=0.2, | |
repetition_penalty=1.5, | |
max_new_tokens=300, | |
) | |
print("LLM loaded...") | |
# Initialize QdrantClient | |
client = QdrantClient(path="./db") | |
print("DB created...") | |
def get_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=250, | |
chunk_overlap=50, | |
length_function=len, | |
) | |
return text_splitter.split_text(text) | |
def setup_database(files): | |
all_chunks = [] | |
for file in files: | |
reader = PdfReader(file) | |
text = "".join(page.extract_text() for page in reader.pages) | |
chunks = get_chunks(text) | |
all_chunks.extend(chunks) | |
print(f"Total chunks: {len(all_chunks)}") | |
print("Chunks are ready...") | |
client.recreate_collection( | |
collection_name="my_facts", | |
vectors_config=models.VectorParams( | |
size=encoder.get_sentence_embedding_dimension(), | |
distance=models.Distance.COSINE, | |
), | |
) | |
print("Collection created...") | |
records = [ | |
models.Record( | |
id=idx, | |
vector=encoder.encode(chunk).tolist(), | |
payload={"text": chunk} | |
) for idx, chunk in enumerate(all_chunks) | |
] | |
client.upload_records( | |
collection_name="my_facts", | |
records=records, | |
) | |
print("Records uploaded...") | |
def answer(question): | |
hits = client.search( | |
collection_name="my_facts", | |
query_vector=encoder.encode(question).tolist(), | |
limit=3 | |
) | |
context = " ".join(hit.payload["text"] for hit in hits) | |
system_prompt = """You are a helpful co-worker, you will use the provided context to answer user questions. | |
Read the given context before answering questions and think step by step. If you cannot answer a user question based on | |
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question.""" | |
B_INST, E_INST = "[INST]", "[/INST]" | |
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" | |
instruction = f"Context: {context}\nUser: {question}" | |
prompt_template = f"{B_INST}{B_SYS}{system_prompt}{E_SYS}{instruction}{E_INST}" | |
print(prompt_template) | |
result = llm(prompt_template) | |
return result | |
def chat(messages, files): | |
if files: | |
setup_database(files) | |
if not messages: | |
return "Please upload PDF documents to initialize the database." | |
last_message = messages[-1]["content"] | |
response = answer(last_message) | |
messages.append({"role": "assistant", "content": response}) | |
return messages | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
file_input = gr.File(label="Upload PDFs", file_count="multiple") | |
with gr.Row(): | |
with gr.Column(scale=0.85): | |
txt = gr.Textbox(show_label=False, placeholder="Enter your question here...").style(container=False) | |
with gr.Column(scale=0.15, min_width=0): | |
send_btn = gr.Button("Send") | |
def respond(messages, files, txt): | |
messages = chat(messages, files) | |
return messages, None, "" | |
send_btn.click(respond, [chatbot, file_input, txt], [chatbot, file_input, txt]) | |
txt.submit(respond, [chatbot, file_input, txt], [chatbot, file_input, txt]) | |
demo.launch() | |