Spaces:
Runtime error
Runtime error
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
from tensorflow.keras.models import load_model | |
from streamlit_drawable_canvas import st_canvas | |
ms = st.session_state | |
if "themes" not in ms: | |
ms.themes = {"current_theme": "light", | |
"refreshed": True, | |
"light": {"theme.base": "dark", | |
"theme.backgroundColor": "black", | |
"theme.primaryColor": "#c98bdb", | |
"theme.secondaryBackgroundColor": "#5591f5", | |
"theme.textColor": "white", | |
"theme.textColor": "white", | |
"button_face": "π"}, | |
"dark": {"theme.base": "light", | |
"theme.backgroundColor": "white", | |
"theme.primaryColor": "#5591f5", | |
"theme.secondaryBackgroundColor": "#82E1D7", | |
"theme.textColor": "#0a1464", | |
"button_face": "π"}, | |
} | |
def ChangeTheme(): | |
previous_theme = ms.themes["current_theme"] | |
tdict = ms.themes["light"] if ms.themes["current_theme"] == "light" else ms.themes["dark"] | |
for vkey, vval in tdict.items(): | |
if vkey.startswith("theme"): st._config.set_option(vkey, vval) | |
ms.themes["refreshed"] = False | |
if previous_theme == "dark": ms.themes["current_theme"] = "light" | |
elif previous_theme == "light": ms.themes["current_theme"] = "dark" | |
btn_face = ms.themes["light"]["button_face"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]["button_face"] | |
st.button(btn_face, on_click=ChangeTheme) | |
if ms.themes["refreshed"] == False: | |
ms.themes["refreshed"] = True | |
st.rerun() | |
# Function to preprocess the image | |
def preprocess_image(image, target_size): | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
image = image.resize(target_size) | |
image = np.expand_dims(image, axis=0) | |
return image | |
# Function to predict the digit | |
def predict_digit(model, image): | |
processed_image = preprocess_image(image, (200, 200)) # Match your model's input size | |
prediction = model.predict(processed_image) | |
return np.argmax(prediction), np.max(prediction) | |
# Load your trained model | |
model = load_model("last_burmese_Digit_recognizer_model.h5") | |
# Streamlit app | |
st.title("Burmese Digit Recognizer") | |
# Upload image file or draw | |
st.markdown("## Upload an Image or Draw") | |
col1, col2 = st.columns(2) | |
with col1: | |
file = st.file_uploader("Upload Here", type=['png', 'jpg', 'jpeg']) | |
with col2: | |
# Drawable canvas | |
canvas_result = st_canvas( | |
fill_color="rgba(255, 165, 0, 0.3)", # Drawing parameters | |
stroke_width=3, | |
stroke_color="#ffffff", | |
background_color="#000000", | |
background_image=None if file else st.session_state.get("background", None), | |
update_streamlit=True, | |
width=400, | |
height=400, | |
drawing_mode="freedraw", | |
key="canvas", | |
) | |
image = None # Initialize image variable | |
# Process uploaded image or drawing | |
if file is not None: | |
image = Image.open(file) # Read image with PIL | |
elif canvas_result.image_data is not None: | |
image = Image.fromarray(np.array(canvas_result.image_data, dtype=np.uint8)).convert('RGB') | |
if image is not None: | |
st.image(image, caption='Uploaded Image') # Display the uploaded/drawn image | |
# Predict the digit | |
digit, confidence = predict_digit(model, image) | |
st.write(f"Predicted Digit: {digit} with confidence {confidence:.2f}") | |
else: | |
st.write("Please upload an image or use the canvas to draw.") | |