Update app.py
Browse files
app.py
CHANGED
@@ -18,31 +18,36 @@ with open("info2.md", "r") as file:
|
|
18 |
info2_md_content = file.read()
|
19 |
|
20 |
# Chunk the info.md and info2.md content into smaller sections
|
21 |
-
chunk_size =
|
22 |
info_md_chunks = textwrap.wrap(info_md_content, chunk_size)
|
23 |
info2_md_chunks = textwrap.wrap(info2_md_content, chunk_size)
|
24 |
|
25 |
# Combine both sets of chunks
|
26 |
all_chunks = info_md_chunks + info2_md_chunks
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def format_prompt_mixtral(message, history, chunks):
|
29 |
prompt = "<s>"
|
30 |
prompt += f"{system_prompt_text}\n\n" # Add the system prompt
|
31 |
|
32 |
# Include the initial context from the chunks
|
33 |
-
for
|
34 |
-
prompt += f"[INST]
|
35 |
|
36 |
-
# Add conversation history
|
37 |
-
if history:
|
38 |
-
for user_prompt, bot_response in history:
|
39 |
-
prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> "
|
40 |
-
|
41 |
# Add the current user message
|
42 |
prompt += f"[INST] {message} [/INST]"
|
43 |
return prompt
|
44 |
|
45 |
-
def chat_inf(message, history, seed, temp, tokens, top_p, rep_p):
|
46 |
generate_kwargs = dict(
|
47 |
temperature=temp,
|
48 |
max_new_tokens=tokens,
|
@@ -52,7 +57,7 @@ def chat_inf(message, history, seed, temp, tokens, top_p, rep_p):
|
|
52 |
seed=seed,
|
53 |
)
|
54 |
|
55 |
-
formatted_prompt = format_prompt_mixtral(message, history,
|
56 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
57 |
output = ""
|
58 |
for response in stream:
|
@@ -62,6 +67,8 @@ def chat_inf(message, history, seed, temp, tokens, top_p, rep_p):
|
|
62 |
yield history
|
63 |
|
64 |
def clear_fn():
|
|
|
|
|
65 |
return None, None
|
66 |
|
67 |
rand_val = random.randint(1, 1111111111111111)
|
@@ -72,7 +79,7 @@ def check_rand(inp, val):
|
|
72 |
else:
|
73 |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
74 |
|
75 |
-
with gr.Blocks() as app:
|
76 |
gr.HTML("""<center><h1 style='font-size:xx-large;'>PTT Chatbot</h1><br><h3>running on Huggingface Inference </h3><br><h7>EXPERIMENTAL</center>""")
|
77 |
with gr.Row():
|
78 |
chat = gr.Chatbot(height=500)
|
@@ -98,7 +105,7 @@ with gr.Blocks() as app: # Add auth here
|
|
98 |
|
99 |
hid1 = gr.Number(value=1, visible=False)
|
100 |
|
101 |
-
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [inp, chat, seed, temp, tokens, top_p, rep_p], chat)
|
102 |
|
103 |
stop_btn.click(None, None, None, cancels=[go])
|
104 |
clear_btn.click(clear_fn, None, [inp, chat])
|
|
|
18 |
info2_md_content = file.read()
|
19 |
|
20 |
# Chunk the info.md and info2.md content into smaller sections
|
21 |
+
chunk_size = 1500 # Adjust this size as needed to fit the context window
|
22 |
info_md_chunks = textwrap.wrap(info_md_content, chunk_size)
|
23 |
info2_md_chunks = textwrap.wrap(info2_md_content, chunk_size)
|
24 |
|
25 |
# Combine both sets of chunks
|
26 |
all_chunks = info_md_chunks + info2_md_chunks
|
27 |
|
28 |
+
# Function to initialize the conversation history with chunks
|
29 |
+
def initialize_history(chunks):
|
30 |
+
history = []
|
31 |
+
for chunk in chunks:
|
32 |
+
history.append(("System Information", chunk))
|
33 |
+
return history
|
34 |
+
|
35 |
+
# Initialize history with initial chunks
|
36 |
+
history = initialize_history(all_chunks[:2]) # Starting with the first two chunks for example
|
37 |
+
|
38 |
def format_prompt_mixtral(message, history, chunks):
|
39 |
prompt = "<s>"
|
40 |
prompt += f"{system_prompt_text}\n\n" # Add the system prompt
|
41 |
|
42 |
# Include the initial context from the chunks
|
43 |
+
for user_prompt, bot_response in history:
|
44 |
+
prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> "
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
# Add the current user message
|
47 |
prompt += f"[INST] {message} [/INST]"
|
48 |
return prompt
|
49 |
|
50 |
+
def chat_inf(message, history, chunks, seed, temp, tokens, top_p, rep_p):
|
51 |
generate_kwargs = dict(
|
52 |
temperature=temp,
|
53 |
max_new_tokens=tokens,
|
|
|
57 |
seed=seed,
|
58 |
)
|
59 |
|
60 |
+
formatted_prompt = format_prompt_mixtral(message, history, chunks)
|
61 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
62 |
output = ""
|
63 |
for response in stream:
|
|
|
67 |
yield history
|
68 |
|
69 |
def clear_fn():
|
70 |
+
global history
|
71 |
+
history = initialize_history(all_chunks[:2]) # Reset to initial chunks
|
72 |
return None, None
|
73 |
|
74 |
rand_val = random.randint(1, 1111111111111111)
|
|
|
79 |
else:
|
80 |
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
81 |
|
82 |
+
with gr.Blocks() as app:
|
83 |
gr.HTML("""<center><h1 style='font-size:xx-large;'>PTT Chatbot</h1><br><h3>running on Huggingface Inference </h3><br><h7>EXPERIMENTAL</center>""")
|
84 |
with gr.Row():
|
85 |
chat = gr.Chatbot(height=500)
|
|
|
105 |
|
106 |
hid1 = gr.Number(value=1, visible=False)
|
107 |
|
108 |
+
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [inp, chat, all_chunks, seed, temp, tokens, top_p, rep_p], chat)
|
109 |
|
110 |
stop_btn.click(None, None, None, cancels=[go])
|
111 |
clear_btn.click(clear_fn, None, [inp, chat])
|