Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -59,16 +59,14 @@ def read_csv_or_excel(file):
|
|
59 |
def find_exact_matches(df1, df2, column_name):
|
60 |
# Find rows with exact matches in the specified column
|
61 |
matches = pd.merge(df1, df2, on=column_name, how='inner')
|
62 |
-
return
|
63 |
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
def find_similar_texts(df1, df2, column_name, exact_matches, threshold=0.3):
|
68 |
-
# Find rows with similar texts in the specified column, excluding exact matches
|
69 |
similar_texts = []
|
70 |
-
|
71 |
-
|
72 |
# Concatenate texts from both dataframes
|
73 |
all_texts = df1[column_name].astype(str).tolist() + df2[column_name].astype(str).tolist()
|
74 |
|
@@ -82,17 +80,19 @@ def find_similar_texts(df1, df2, column_name, exact_matches, threshold=0.3):
|
|
82 |
# Iterate over pairs of rows to find similar texts
|
83 |
for i, row1 in df1.iterrows():
|
84 |
for j, row2 in df2.iterrows():
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
if
|
|
|
|
|
93 |
similar_texts.append((i, j, row1[column_name], row2[column_name]))
|
94 |
|
95 |
-
return similar_texts
|
96 |
|
97 |
|
98 |
def main():
|
@@ -130,13 +130,21 @@ def main():
|
|
130 |
st.write(exact_matches)
|
131 |
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
st.header("Similar (but Not Same) Texts")
|
134 |
for text_pair in similar_texts:
|
135 |
st.write(f"Row {text_pair[0]} in warehouse item stocks is similar to Row {text_pair[1]} in industry item stocks:")
|
136 |
st.write(f"Warehouse: {text_pair[2]}")
|
137 |
st.write(f"Industry: {text_pair[3]}")
|
138 |
-
st.write
|
139 |
-
|
140 |
|
141 |
|
142 |
if __name__ == "__main__":
|
|
|
59 |
def find_exact_matches(df1, df2, column_name):
|
60 |
# Find rows with exact matches in the specified column
|
61 |
matches = pd.merge(df1, df2, on=column_name, how='inner')
|
62 |
+
return matches
|
63 |
|
64 |
|
65 |
+
def find_similar_texts(df1, df2, column_name, threshold=0.3):
|
66 |
+
# Find rows with similar texts in the specified column, including exact matches
|
|
|
|
|
67 |
similar_texts = []
|
68 |
+
exact_matches = []
|
69 |
+
|
70 |
# Concatenate texts from both dataframes
|
71 |
all_texts = df1[column_name].astype(str).tolist() + df2[column_name].astype(str).tolist()
|
72 |
|
|
|
80 |
# Iterate over pairs of rows to find similar texts
|
81 |
for i, row1 in df1.iterrows():
|
82 |
for j, row2 in df2.iterrows():
|
83 |
+
similarity = similarity_matrix[i, len(df1) + j]
|
84 |
+
if similarity >= threshold:
|
85 |
+
# Calculate Levenshtein distance between strings
|
86 |
+
distance = levenshtein_distance(row1[column_name], row2[column_name])
|
87 |
+
max_length = max(len(row1[column_name]), len(row2[column_name]))
|
88 |
+
similarity_score = 1 - (distance / max_length)
|
89 |
+
if similarity_score >= threshold:
|
90 |
+
if similarity == 1: # Exact match
|
91 |
+
exact_matches.append((i, j, row1[column_name], row2[column_name]))
|
92 |
+
else:
|
93 |
similar_texts.append((i, j, row1[column_name], row2[column_name]))
|
94 |
|
95 |
+
return similar_texts, exact_matches
|
96 |
|
97 |
|
98 |
def main():
|
|
|
130 |
st.write(exact_matches)
|
131 |
|
132 |
|
133 |
+
# Display exact matches
|
134 |
+
st.header("Exact Matches Compare")
|
135 |
+
for match in exact_matches:
|
136 |
+
st.write(f"Row {match[0]} in warehouse item stocks is exactly the same as Row {match[1]} in industry item stocks:")
|
137 |
+
st.write(f"Warehouse: {match[2]}")
|
138 |
+
st.write(f"Industry: {match[3]}")
|
139 |
+
st.write()
|
140 |
+
|
141 |
+
# Display similar texts
|
142 |
st.header("Similar (but Not Same) Texts")
|
143 |
for text_pair in similar_texts:
|
144 |
st.write(f"Row {text_pair[0]} in warehouse item stocks is similar to Row {text_pair[1]} in industry item stocks:")
|
145 |
st.write(f"Warehouse: {text_pair[2]}")
|
146 |
st.write(f"Industry: {text_pair[3]}")
|
147 |
+
st.write()
|
|
|
148 |
|
149 |
|
150 |
if __name__ == "__main__":
|