Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -59,7 +59,39 @@ def read_csv_or_excel(file):
|
|
59 |
def find_exact_matches(df1, df2, column_name):
|
60 |
# Find rows with exact matches in the specified column
|
61 |
matches = pd.merge(df1, df2, on=column_name, how='inner')
|
62 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
def find_similar_texts(df1, df2, column_name, exact_matches, threshold=0.3):
|
@@ -123,6 +155,7 @@ def main():
|
|
123 |
|
124 |
# Find similar texts
|
125 |
similar_texts = find_similar_texts(warehouse_df, industry_df, warehouse_column, exact_matches)
|
|
|
126 |
|
127 |
# Display results
|
128 |
st.header("Exact Matches")
|
@@ -136,6 +169,13 @@ def main():
|
|
136 |
st.write(f"Industry: {text_pair[3]}")
|
137 |
st.write
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
main()
|
|
|
59 |
def find_exact_matches(df1, df2, column_name):
|
60 |
# Find rows with exact matches in the specified column
|
61 |
matches = pd.merge(df1, df2, on=column_name, how='inner')
|
62 |
+
return
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
def find_similar_texts2(df1, df2, column_name, exact_matches, threshold=0.3):
|
67 |
+
# Find rows with similar texts in the specified column, excluding exact matches
|
68 |
+
similar_texts = []
|
69 |
+
exact_match_indices = set(exact_matches.index.tolist())
|
70 |
+
|
71 |
+
# Concatenate texts from both dataframes
|
72 |
+
all_texts = df1[column_name].astype(str).tolist() + df2[column_name].astype(str).tolist()
|
73 |
+
|
74 |
+
# Compute TF-IDF vectors
|
75 |
+
vectorizer = TfidfVectorizer()
|
76 |
+
tfidf_matrix = vectorizer.fit_transform(all_texts)
|
77 |
+
|
78 |
+
# Compute cosine similarity matrix
|
79 |
+
similarity_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix)
|
80 |
+
|
81 |
+
# Iterate over pairs of rows to find similar texts
|
82 |
+
for i, row1 in df1.iterrows():
|
83 |
+
for j, row2 in df2.iterrows():
|
84 |
+
if i not in exact_match_indices and j not in exact_match_indices:
|
85 |
+
similarity = similarity_matrix[i, len(df1) + j]
|
86 |
+
if similarity = 1: # Exclude exact matches
|
87 |
+
# Calculate Levenshtein distance between strings
|
88 |
+
distance = levenshtein_distance(row1[column_name], row2[column_name])
|
89 |
+
max_length = max(len(row1[column_name]), len(row2[column_name]))
|
90 |
+
similarity_score = 1 - (distance / max_length)
|
91 |
+
if similarity_score >= threshold:
|
92 |
+
similar_texts.append((i, j, row1[column_name], row2[column_name]))
|
93 |
+
|
94 |
+
return similar_texts2
|
95 |
|
96 |
|
97 |
def find_similar_texts(df1, df2, column_name, exact_matches, threshold=0.3):
|
|
|
155 |
|
156 |
# Find similar texts
|
157 |
similar_texts = find_similar_texts(warehouse_df, industry_df, warehouse_column, exact_matches)
|
158 |
+
similar_texts2 = find_similar_texts(warehouse_df, industry_df, warehouse_column, exact_matches)
|
159 |
|
160 |
# Display results
|
161 |
st.header("Exact Matches")
|
|
|
169 |
st.write(f"Industry: {text_pair[3]}")
|
170 |
st.write
|
171 |
|
172 |
+
st.header("Exactly Same Texts")
|
173 |
+
for text_pair in similar_texts2:
|
174 |
+
st.write(f"Row {text_pair[0]} in warehouse item stocks is the same as Row {text_pair[1]} in industry item stocks:")
|
175 |
+
st.write(f"Warehouse: {text_pair[2]}")
|
176 |
+
st.write(f"Industry: {text_pair[3]}")
|
177 |
+
st.write
|
178 |
+
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
main()
|