Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
from difflib import SequenceMatcher | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from Levenshtein import distance as levenshtein_distance | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
ms = st.session_state | |
if "themes" not in ms: | |
ms.themes = {"current_theme": "light", | |
"refreshed": True, | |
"light": {"theme.base": "dark", | |
"theme.backgroundColor": "black", | |
"theme.primaryColor": "#c98bdb", | |
"theme.secondaryBackgroundColor": "#5591f5", | |
"theme.textColor": "white", | |
"theme.textColor": "white", | |
"button_face": "π"}, | |
"dark": {"theme.base": "light", | |
"theme.backgroundColor": "white", | |
"theme.primaryColor": "#5591f5", | |
"theme.secondaryBackgroundColor": "#82E1D7", | |
"theme.textColor": "#0a1464", | |
"button_face": "π"}, | |
} | |
def ChangeTheme(): | |
previous_theme = ms.themes["current_theme"] | |
tdict = ms.themes["light"] if ms.themes["current_theme"] == "light" else ms.themes["dark"] | |
for vkey, vval in tdict.items(): | |
if vkey.startswith("theme"): st._config.set_option(vkey, vval) | |
ms.themes["refreshed"] = False | |
if previous_theme == "dark": ms.themes["current_theme"] = "light" | |
elif previous_theme == "light": ms.themes["current_theme"] = "dark" | |
btn_face = ms.themes["light"]["button_face"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]["button_face"] | |
st.button(btn_face, on_click=ChangeTheme) | |
if ms.themes["refreshed"] == False: | |
ms.themes["refreshed"] = True | |
st.rerun() | |
def read_csv_or_excel(file): | |
# Read CSV or Excel file | |
if file.name.endswith('.csv'): | |
return pd.read_csv(file) | |
elif file.name.endswith('.xlsx') or file.name.endswith('.xls'): | |
return pd.read_excel(file) | |
else: | |
raise ValueError("Unsupported file format. Only CSV and Excel files are supported.") | |
def find_exact_match(df1, df2, column_name): | |
# Ensure the column for merging has the same data type | |
df1[column_name] = df1[column_name].astype(str).str.strip() | |
df2[column_name] = df2[column_name].astype(str).str.strip() | |
# Find rows with exact matches in the specified column | |
matches = pd.merge(df1, df2, on=column_name, how='inner') | |
return matches | |
def find_similar_texts(df1, df2, column_name, threshold=0.3): | |
# Find rows with similar texts in the specified column, excluding exact matches | |
similar_texts = [] | |
exact_matches = [] | |
# Convert numeric values to strings | |
df1[column_name] = df1[column_name].astype(str) | |
df2[column_name] = df2[column_name].astype(str) | |
# Concatenate texts from both dataframes | |
all_texts = df1[column_name].tolist() + df2[column_name].tolist() | |
# Compute TF-IDF vectors | |
vectorizer = TfidfVectorizer() | |
tfidf_matrix = vectorizer.fit_transform(all_texts) | |
# Compute cosine similarity matrix | |
similarity_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix) | |
# Iterate over pairs of rows to find similar texts | |
for i, row1 in df1.iterrows(): | |
for j, row2 in df2.iterrows(): | |
similarity = similarity_matrix[i, len(df1) + j] | |
if similarity >= threshold: | |
# Calculate Levenshtein distance between strings | |
distance = levenshtein_distance(row1[column_name], row2[column_name]) | |
max_length = max(len(row1[column_name]), len(row2[column_name])) | |
similarity_score = 1 - (distance / max_length) | |
if similarity_score >= threshold: | |
if similarity == 1: # Exact match | |
exact_matches.append((i, j, row1[column_name], row2[column_name])) | |
elif similarity < 0.99: # Similar but not the same | |
similar_texts.append((i, j, row1[column_name], row2[column_name])) | |
return similar_texts, exact_matches | |
def plot_correlation(df, column): | |
plt.figure(figsize=(8, 6)) | |
plt.scatter(df.index, df[column]) | |
plt.xlabel("Index") | |
plt.ylabel(column) | |
plt.title(f"Correlation Plot of {column}") | |
return plt.gcf() # Return the matplotlib figure | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
def plot_correlation_matrix(df): | |
# Filter for numeric columns, if the DataFrame has non-numeric columns | |
numeric_df = df.select_dtypes(include=['number']) | |
correlation_matrix = numeric_df.corr() | |
# Plotting the heatmap | |
plt.figure(figsize=(10, 8)) | |
sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', cbar=True, linewidths=0.5) | |
plt.title("Correlation Matrix") | |
plt.xticks(rotation=45, ha="right") | |
plt.yticks(rotation=0) | |
plt.tight_layout() # Adjusts plot to ensure everything fits without overlap | |
st.pyplot() # Use Streamlit's method to display the plot | |
def main(): | |
st.title("Item Comparison App") | |
# Upload files | |
st.header("Upload Files") | |
warehouse_file = st.file_uploader("Upload Warehouse Item Stocks (CSV or Excel)") | |
industry_file = st.file_uploader("Upload Industry Item Stocks (CSV or Excel)") | |
if warehouse_file is not None and industry_file is not None: | |
# Read files | |
warehouse_df = read_csv_or_excel(warehouse_file) | |
industry_df = read_csv_or_excel(industry_file) | |
# Get column names | |
warehouse_columns = warehouse_df.columns.tolist() | |
industry_columns = industry_df.columns.tolist() | |
# Select columns using dropdowns | |
st.header("Select Columns") | |
warehouse_column = st.selectbox("Choose column from warehouse item stocks:", warehouse_columns) | |
industry_column = st.selectbox("Choose column from industry item stocks:", industry_columns) | |
# Compare button | |
if st.button("Compare"): | |
# Find exact matches | |
exact_match = find_exact_match(warehouse_df, industry_df, warehouse_column) | |
# Find similar texts | |
similar_texts, exact_matches = find_similar_texts(warehouse_df, industry_df, warehouse_column) | |
# Display results | |
st.header("Exact Matches") | |
st.write(exact_match) | |
# Display exact matches | |
st.header("Exact Matches Compare") | |
for match in exact_matches: | |
st.write(f"Row {match[0]+2} in warehouse item stocks is exactly the same as Row {match[1]+2} in industry item stocks:") | |
st.write(f"Warehouse: {match[2]}") | |
st.write(f"Industry: {match[3]}") | |
st.write(f"____________________") | |
st.write() | |
# Display similar texts | |
st.header("Similar (but Not Same) Texts") | |
for text_pair in similar_texts: | |
st.write(f"Row {text_pair[0]+2} in warehouse item stocks is similar to Row {text_pair[1]+2} in industry item stocks:") | |
st.write(f"Warehouse: {text_pair[2]}") | |
st.write(f"Industry: {text_pair[3]}") | |
st.write(f"____________________") | |
st.write() | |
if warehouse_df[warehouse_column].dtype != "object" and industry_df[industry_column].dtype != "object": | |
# Calculate correlation | |
correlation = warehouse_df[warehouse_column].corr(industry_df[industry_column]) | |
st.header("Correlation") | |
st.write(f"The correlation between {warehouse_column} in warehouse item stocks and {industry_column} in industry item stocks is: {correlation}") | |
st.write() | |
# Show correlation plot for each dataset | |
if st.button("Correlation for each dataset"): | |
st.subheader("Correlation Plot for 1st Dataset") | |
warehouse_corr_plot = plot_correlation(warehouse_df, warehouse_column) | |
st.pyplot(warehouse_corr_plot) | |
st.subheader("Correlation Plot for 2nd Dataset") | |
industry_corr_plot = plot_correlation(industry_df, industry_column) | |
st.pyplot(industry_corr_plot) | |
st.subheader("Correlation Matrix for 1st Dataset") | |
plot_correlation_matrix(warehouse_df) | |
st.subheader("Correlation Matrix for 2nd Dataset") | |
plot_correlation_matrix(industry_df) | |
if __name__ == "__main__": | |
main() |