Mattral's picture
Update app.py
d69de0d verified
import pandas as pd
import streamlit as st
from difflib import SequenceMatcher
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from Levenshtein import distance as levenshtein_distance
import matplotlib.pyplot as plt
import seaborn as sns
ms = st.session_state
if "themes" not in ms:
ms.themes = {"current_theme": "light",
"refreshed": True,
"light": {"theme.base": "dark",
"theme.backgroundColor": "black",
"theme.primaryColor": "#c98bdb",
"theme.secondaryBackgroundColor": "#5591f5",
"theme.textColor": "white",
"theme.textColor": "white",
"button_face": "🌜"},
"dark": {"theme.base": "light",
"theme.backgroundColor": "white",
"theme.primaryColor": "#5591f5",
"theme.secondaryBackgroundColor": "#82E1D7",
"theme.textColor": "#0a1464",
"button_face": "🌞"},
}
def ChangeTheme():
previous_theme = ms.themes["current_theme"]
tdict = ms.themes["light"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]
for vkey, vval in tdict.items():
if vkey.startswith("theme"): st._config.set_option(vkey, vval)
ms.themes["refreshed"] = False
if previous_theme == "dark": ms.themes["current_theme"] = "light"
elif previous_theme == "light": ms.themes["current_theme"] = "dark"
btn_face = ms.themes["light"]["button_face"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]["button_face"]
st.button(btn_face, on_click=ChangeTheme)
if ms.themes["refreshed"] == False:
ms.themes["refreshed"] = True
st.rerun()
def read_csv_or_excel(file):
# Read CSV or Excel file
if file.name.endswith('.csv'):
return pd.read_csv(file)
elif file.name.endswith('.xlsx') or file.name.endswith('.xls'):
return pd.read_excel(file)
else:
raise ValueError("Unsupported file format. Only CSV and Excel files are supported.")
def find_exact_match(df1, df2, column_name):
# Ensure the column for merging has the same data type
df1[column_name] = df1[column_name].astype(str).str.strip()
df2[column_name] = df2[column_name].astype(str).str.strip()
# Find rows with exact matches in the specified column
matches = pd.merge(df1, df2, on=column_name, how='inner')
return matches
def find_similar_texts(df1, df2, column_name, threshold=0.3):
# Find rows with similar texts in the specified column, excluding exact matches
similar_texts = []
exact_matches = []
# Convert numeric values to strings
df1[column_name] = df1[column_name].astype(str)
df2[column_name] = df2[column_name].astype(str)
# Concatenate texts from both dataframes
all_texts = df1[column_name].tolist() + df2[column_name].tolist()
# Compute TF-IDF vectors
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(all_texts)
# Compute cosine similarity matrix
similarity_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix)
# Iterate over pairs of rows to find similar texts
for i, row1 in df1.iterrows():
for j, row2 in df2.iterrows():
similarity = similarity_matrix[i, len(df1) + j]
if similarity >= threshold:
# Calculate Levenshtein distance between strings
distance = levenshtein_distance(row1[column_name], row2[column_name])
max_length = max(len(row1[column_name]), len(row2[column_name]))
similarity_score = 1 - (distance / max_length)
if similarity_score >= threshold:
if similarity == 1: # Exact match
exact_matches.append((i, j, row1[column_name], row2[column_name]))
elif similarity < 0.99: # Similar but not the same
similar_texts.append((i, j, row1[column_name], row2[column_name]))
return similar_texts, exact_matches
def plot_correlation(df, column):
plt.figure(figsize=(8, 6))
plt.scatter(df.index, df[column])
plt.xlabel("Index")
plt.ylabel(column)
plt.title(f"Correlation Plot of {column}")
return plt.gcf() # Return the matplotlib figure
st.set_option('deprecation.showPyplotGlobalUse', False)
def plot_correlation_matrix(df):
# Filter for numeric columns, if the DataFrame has non-numeric columns
numeric_df = df.select_dtypes(include=['number'])
correlation_matrix = numeric_df.corr()
# Plotting the heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', cbar=True, linewidths=0.5)
plt.title("Correlation Matrix")
plt.xticks(rotation=45, ha="right")
plt.yticks(rotation=0)
plt.tight_layout() # Adjusts plot to ensure everything fits without overlap
st.pyplot() # Use Streamlit's method to display the plot
def main():
st.title("Item Comparison App")
# Upload files
st.header("Upload Files")
warehouse_file = st.file_uploader("Upload Warehouse Item Stocks (CSV or Excel)")
industry_file = st.file_uploader("Upload Industry Item Stocks (CSV or Excel)")
if warehouse_file is not None and industry_file is not None:
# Read files
warehouse_df = read_csv_or_excel(warehouse_file)
industry_df = read_csv_or_excel(industry_file)
# Get column names
warehouse_columns = warehouse_df.columns.tolist()
industry_columns = industry_df.columns.tolist()
# Select columns using dropdowns
st.header("Select Columns")
warehouse_column = st.selectbox("Choose column from warehouse item stocks:", warehouse_columns)
industry_column = st.selectbox("Choose column from industry item stocks:", industry_columns)
# Compare button
if st.button("Compare"):
# Find exact matches
exact_match = find_exact_match(warehouse_df, industry_df, warehouse_column)
# Find similar texts
similar_texts, exact_matches = find_similar_texts(warehouse_df, industry_df, warehouse_column)
# Display results
st.header("Exact Matches")
st.write(exact_match)
# Display exact matches
st.header("Exact Matches Compare")
for match in exact_matches:
st.write(f"Row {match[0]+2} in warehouse item stocks is exactly the same as Row {match[1]+2} in industry item stocks:")
st.write(f"Warehouse: {match[2]}")
st.write(f"Industry: {match[3]}")
st.write(f"____________________")
st.write()
# Display similar texts
st.header("Similar (but Not Same) Texts")
for text_pair in similar_texts:
st.write(f"Row {text_pair[0]+2} in warehouse item stocks is similar to Row {text_pair[1]+2} in industry item stocks:")
st.write(f"Warehouse: {text_pair[2]}")
st.write(f"Industry: {text_pair[3]}")
st.write(f"____________________")
st.write()
if warehouse_df[warehouse_column].dtype != "object" and industry_df[industry_column].dtype != "object":
# Calculate correlation
correlation = warehouse_df[warehouse_column].corr(industry_df[industry_column])
st.header("Correlation")
st.write(f"The correlation between {warehouse_column} in warehouse item stocks and {industry_column} in industry item stocks is: {correlation}")
st.write()
# Show correlation plot for each dataset
if st.button("Correlation for each dataset"):
st.subheader("Correlation Plot for 1st Dataset")
warehouse_corr_plot = plot_correlation(warehouse_df, warehouse_column)
st.pyplot(warehouse_corr_plot)
st.subheader("Correlation Plot for 2nd Dataset")
industry_corr_plot = plot_correlation(industry_df, industry_column)
st.pyplot(industry_corr_plot)
st.subheader("Correlation Matrix for 1st Dataset")
plot_correlation_matrix(warehouse_df)
st.subheader("Correlation Matrix for 2nd Dataset")
plot_correlation_matrix(industry_df)
if __name__ == "__main__":
main()