StreamlitChat / app.py
MatteoScript's picture
Update app.py
1e94a7e verified
raw
history blame
27.9 kB
import streamlit as st
from chat_client import chat
from google_function import leggi_gmail
from google_function import scrivi_bozza_gmail
from google_function import leggi_calendario_google
from google_function import connetti_google
from google_function import crea_documento_google
import time
import os
from dotenv import load_dotenv
from sentence_transformers import SentenceTransformer
import requests
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
import json
from googlesearch import search
from bs4 import BeautifulSoup
import PyPDF2
import pytesseract
from PIL import Image
from youtube_transcript_api import YouTubeTranscriptApi
import webbrowser
from streamlit_javascript import st_javascript
import datetime
from openai import OpenAI
load_dotenv()
EFFETTUA_LOGIN_GOOGLE = os.getenv('EFFETTUA_LOGIN_GOOGLE')=="1"
URL_APP_SCRIPT = os.getenv('URL_APP_SCRIPT')
URL_PROMPT = URL_APP_SCRIPT + '?IdFoglio=1cLw9q70BsPmxMBj9PIzgXtq6sm3X-GVBVnOB5wE8jr8'
URL_DOCUMENTI = URL_APP_SCRIPT + '?IdSecondoFoglio=1cLw9q70BsPmxMBj9PIzgXtq6sm3X-GVBVnOB5wE8jr8'
SYSTEM_PROMPT = ["Sei BonsiAI e mi aiuterai nelle mie richieste (Parla in ITALIANO)", "Esatto, sono BonsiAI. Di cosa hai bisogno?"]
CHAT_BOTS = {
"Mixtral 8x7B v0.1": {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"description": "Un modello avanzato di chatbot con architettura 8x7B sviluppato da Mistral AI. Supporta fino a 30 pagine di input e costa zero",
"pagine_contesto": 30,
"richiede_api_key": False
},
"Mistral 7B v0.2": {
"model": "mistralai/Mistral-7B-Instruct-v0.2",
"description": "Una versione più leggera del modello Mistral, con architettura 7B, sviluppato da Mistral AI. Supporta fino a 8 pagine di input e costa zero",
"pagine_contesto": 8,
"richiede_api_key": False
},
"Gpt 3.5 Turbo": {
"model": "gpt-3.5-turbo",
"description": "Una versione ottimizzata e performante del modello GPT-3.5 di OpenAI. Supporta 16 Pagine di input e costa 2$ ogni 1000 Pagine",
"pagine_contesto": 16,
"richiede_api_key": True
},
"Gpt 4 Turbo": {
"model": "gpt-4-turbo",
"description": "Una versione avanzata e potenziata del famoso modello GPT-4 di OpenAI, ottimizzata per prestazioni superiori. Supporta fino a 120 Pagine di input e costa 30$ ogni 1000 Pagine",
"pagine_contesto": 120,
"richiede_api_key": True
},
"Gpt 4-o": {
"model": "gpt-4o",
"description": "L'ultimissima versione di GPT! Supporta fino a 120 Pagine di input e costa 30$ ogni 1000 Pagine",
"pagine_contesto": 120,
"richiede_api_key": True
}
}
option_personalizzata = {'Personalizzata': {'systemRole': 'Tu sei BONSI AI, il mio assistente personale della scuola superiore del Bonsignori. Aiutami in base alle mie esigenze',
'systemStyle': 'Firmati sempre come BONSI AI. (scrivi in italiano)',
'instruction': '',
'tipo': '',
'RAG': False}
}
option_leggiemail = {'Leggi Gmail': {'systemRole': 'Tu sei BONSI AI, il mio assistente personale della scuola superiore del Bonsignori. Effettua l operazione richiesta sulla base delle seguenti email: ',
'systemStyle': 'Firmati sempre come BONSI AI. (scrivi in italiano)',
'instruction': '',
'tipo': 'EMAIL',
'RAG': False}
}
option_leggicalendar = {'Leggi Calendar': {'systemRole': 'Tu sei BONSI AI, il mio assistente personale della scuola superiore del Bonsignori. Effettua l operazione richiesta sulla base dei seguenti eventi di calendario: ',
'systemStyle': 'Firmati sempre come BONSI AI. (scrivi in italiano)',
'instruction': '',
'tipo': 'CALENDAR',
'RAG': False}
}
# ----------------------------------------------------------- Interfaccia --------------------------------------------------------------------
st.set_page_config(page_title="Bonsi A.I.", page_icon="🏫")
def init_state() :
if "messages" not in st.session_state:
st.session_state.messages = []
if "temp" not in st.session_state:
st.session_state.temp = 0.8
if "history" not in st.session_state:
st.session_state.history = [SYSTEM_PROMPT]
if "top_k" not in st.session_state:
st.session_state.top_k = 5
if "repetion_penalty" not in st.session_state :
st.session_state.repetion_penalty = 1
if "api_key" not in st.session_state :
st.session_state.api_key = ""
if "chat_bot" not in st.session_state :
st.session_state.chat_bot = "Mixtral 8x7B v0.1"
if 'loaded_data' not in st.session_state:
st.session_state.loaded_data = False
if "split" not in st.session_state:
st.session_state.split = 30
if "enable_history" not in st.session_state:
st.session_state.enable_history = True
if "audio_bytes" not in st.session_state:
st.session_state.audio_bytes = False
if "cerca_online" not in st.session_state:
st.session_state.cerca_online = False
if "numero_siti" not in st.session_state:
st.session_state.numero_siti = 3
if "numero_generazioni" not in st.session_state:
st.session_state.numero_generazioni = 1
if "numero_elementi" not in st.session_state:
st.session_state.numero_elementi = 5
if "data_inizio" not in st.session_state:
st.session_state.data_inizio = None
if "data_inizio" not in st.session_state:
st.session_state.data_inizio = None
if "testo_documenti" not in st.session_state:
st.session_state.testo_documenti = ''
if "uploaded_files" not in st.session_state:
st.session_state.uploaded_files = None
if "client" not in st.session_state:
st.session_state.client = None
if "urls" not in st.session_state:
st.session_state.urls = [""] * 5
if "creds" not in st.session_state:
st.session_state.creds = None
if "login_effettuato" not in st.session_state:
st.session_state.login_effettuato = False
if "ultimo_messaggio" not in st.session_state:
st.session_state.ultimo_messaggio = ""
if "tutti_messaggi" not in st.session_state:
st.session_state.tutti_messaggi = ""
if "tbs_options" not in st.session_state:
st.session_state.tbs_options = {
"Sempre": "0",
"Ultimo anno": "qdr:y",
"Ultimo mese": "qdr:m",
"Ultima settimana": "qdr:w",
"Ultimo giorno": "qdr:d"
}
if not st.session_state.loaded_data and (st.session_state.login_effettuato == True or EFFETTUA_LOGIN_GOOGLE == False):
place=st.empty()
place=st.empty()
with place:
with st.status("Caricamento in corso...", expanded=True) as status:
st.write("Inizializzazione Ambiente")
time.sleep(1)
st.write("Inizializzazione Prompt")
URL_REDIRECT = os.getenv('URL_REDIRECT')
options = {}
if URL_REDIRECT != "http://localhost:8501/":
options = requests.get(URL_PROMPT).json()
st.write("Inizializzazione Documenti")
documenti = {}
if URL_REDIRECT != "http://localhost:8501/":
documenti = requests.get(URL_DOCUMENTI).json()
st.session_state.options = {**option_personalizzata, **options}
if EFFETTUA_LOGIN_GOOGLE:
st.session_state.options.update(option_leggiemail)
st.session_state.options.update(option_leggicalendar)
st.session_state.documenti = documenti
st.session_state.loaded_data = True
status.update(label="Caricamento Completato", state="complete", expanded=False)
place.empty()
def read_text_from_file(file):
text = ""
if file.name.endswith(".txt"):
text = file.read().decode("utf-8")
elif file.name.endswith(".pdf"):
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text()
else:
try:
image = Image.open(file)
text = pytesseract.image_to_string(image)
except:
st.write(f"Non è possibile leggere il testo dal file '{file.name}'.")
return text
def open_new_tab(url):
placeholder = st.empty()
with placeholder:
placeholder.empty()
new_tab_js = f'''<script type="text/javascript">window.open("{url}", "_blank");</script>'''
st.components.v1.html(new_tab_js, height=1)
time.sleep(0.3)
placeholder.empty()
def esporta_testo(tipo, ultimo_messaggio):
testo = st.session_state.ultimo_messaggio if ultimo_messaggio else st.session_state.tutti_messaggi
if tipo == 'Bozza Email':
url = scrivi_bozza_gmail(testo)
open_new_tab(url)
if tipo == 'Google Documenti':
url = crea_documento_google(testo)
open_new_tab(url)
def sidebar():
def retrieval_settings() :
st.markdown("# Impostazioni Prompt")
st.session_state.selected_option_key = st.selectbox('Azione', list(st.session_state.options.keys()))
st.session_state.selected_option = st.session_state.options.get(st.session_state.selected_option_key, {})
if st.session_state.options.get(st.session_state.selected_option_key, {})["tipo"]=='DOCUMENTO':
st.session_state.selected_documento_key = st.selectbox('Documento', list(st.session_state.documenti.keys()))
st.session_state.selected_documento = st.session_state.documenti.get(st.session_state.selected_documento_key, {})
st.session_state.instruction = st.session_state.selected_documento.get('instruction', '')['Testo']
else:
st.session_state.instruction = st.session_state.selected_option.get('instruction', '')
st.session_state.systemRole = st.session_state.selected_option.get('systemRole', '')
st.session_state.systemRole = st.text_area("Descrizione", st.session_state.systemRole, help='Ruolo del chatbot e descrizione dell\'azione che deve svolgere')
st.session_state.systemStyle = st.session_state.selected_option.get('systemStyle', '')
st.session_state.systemStyle = st.text_area("Stile", st.session_state.systemStyle, help='Descrizione dello stile utilizzato per generare il testo')
if st.session_state.selected_option["tipo"]=='EMAIL':
st.session_state.numero_elementi = st.slider(label="Numero Email", min_value=1, max_value=100, value=10)
st.session_state.data_inizio = st.date_input("Email dal", value=datetime.date.today()-datetime.timedelta(days=7), format='DD/MM/YYYY')
st.session_state.data_fine = st.date_input("Email al", value=datetime.date.today(), format='DD/MM/YYYY')
if st.session_state.selected_option["tipo"]=='CALENDAR':
st.session_state.numero_elementi = st.slider(label="Numero Eventi Calendario", min_value=1, max_value=100, value=10)
st.session_state.data_inizio = st.date_input("Eventi dal", value=datetime.date.today(), format='DD/MM/YYYY')
st.session_state.data_fine = st.date_input("Eventi al", value=datetime.date.today()+datetime.timedelta(days=7), format='DD/MM/YYYY')
st.session_state.rag_enabled = st.session_state.selected_option.get('tipo', '')=='RAG'
if st.session_state.selected_option_key == 'Decreti':
st.session_state.top_k = st.slider(label="Documenti da ricercare", min_value=1, max_value=20, value=4, disabled=not st.session_state.rag_enabled)
st.session_state.decreti_escludere = st.multiselect(
'Decreti da escludere',
['23.10.2 destinazione risorse residue pnrr DGR 1051-2023_Destinazione risorse PNRR Duale.pdf', '23.10.25 accompagnatoria Circolare Inail assicurazione.pdf', '23.10.26 circolare Inail assicurazione.pdf', '23.10.3 FAQ in attesa di avviso_.pdf', '23.11.2 avviso 24_24 Decreto 17106-2023 Approvazione Avviso IeFP 2023-2024.pdf', '23.5.15 decreto linee inclusione x enti locali.pdf', '23.6.21 Circolare+esplicativa+DGR+312-2023.pdf', '23.7.3 1° Decreto R.L. 23_24 .pdf', '23.9 Regolamento_prevenzione_bullismo_e_cyberbullismo__Centro_Bonsignori.pdf', '23.9.1 FAQ inizio anno formativo.pdf', '23.9.15 DECRETO VERIFICHE AMMINISTR 15-09-23.pdf', '23.9.4 modifica decreto GRS.pdf', '23.9.8 Budget 23_24.pdf', '24.10.2022 DECRETO loghi N.15176.pdf', 'ALLEGATO C_Scheda Supporti al funzionamento.pdf', 'ALLEGATO_ B_ Linee Guida.pdf', 'ALLEGATO_A1_PEI_INFANZIA.pdf', 'ALLEGATO_A2_PEI_PRIMARIA.pdf', 'ALLEGATO_A3_PEI_SEC_1_GRADO.pdf', 'ALLEGATO_A4_PEI_SEC_2_GRADO.pdf', 'ALLEGATO_C_1_Tabella_Fabbisogni.pdf', 'Brand+Guidelines+FSE+.pdf', 'Decreto 20797 del 22-12-2023_Aggiornamento budget PNRR.pdf', 'Decreto 20874 del 29-12-2023 Avviso IeFP PNRR 2023-2024_file unico.pdf'],
[])
st.session_state.uploaded_files = st.file_uploader("Importa file", accept_multiple_files=True)
st.session_state.testo_documenti = ''
for uploaded_file in st.session_state.uploaded_files:
text_doc = read_text_from_file(uploaded_file)
st.session_state.testo_documenti += text_doc
print(st.session_state.testo_documenti)
st.markdown("---")
st.markdown("# Ricerca Online")
st.session_state.cerca_online = st.toggle("Attivata", value=False)
with st.popover("Siti Specifici", disabled=not st.session_state.cerca_online,use_container_width=True):
st.markdown("#### Inserisci Siti Web ")
for i in range(5):
st.session_state.urls[i] = st.text_input(f"URL Sito {i+1}", placeholder='Sito Web...', help='è possibile specificare anche il link di un video Youtube, in tal caso verrà restituita la trascrizione del video')
st.session_state.selected_tbs = st.selectbox("Periodo:", list(st.session_state.tbs_options.keys()), disabled=(not st.session_state.cerca_online) or (st.session_state.urls[0]!=""))
st.session_state.tbs_value = st.session_state.tbs_options[st.session_state.selected_tbs]
st.session_state.numero_siti = st.slider(label="Risultati", min_value = 1, max_value=20, value=3, disabled=(not st.session_state.cerca_online) or (st.session_state.urls[0]!=""))
#st.session_state.suddividi_ricerca = st.toggle("Attivata", value=False)
st.markdown("---")
def model_settings():
st.markdown("# Modello")
st.session_state.chat_bot = st.sidebar.selectbox('Tipo', list(CHAT_BOTS.keys()))
if CHAT_BOTS[st.session_state.chat_bot]["richiede_api_key"] == True:
st.session_state.api_key = st.text_input('Api Key', type = 'password', label_visibility='collapsed', placeholder='Inserisci la chiave API')
st.session_state.client = OpenAI(api_key=st.session_state.api_key)
print('xxxxxxx')
st.write(CHAT_BOTS[st.session_state.chat_bot]["description"])
st.session_state.split = st.slider(label="Pagine Suddivisione", min_value=1, max_value=CHAT_BOTS[st.session_state.chat_bot]["pagine_contesto"], value=CHAT_BOTS[st.session_state.chat_bot]["pagine_contesto"], help='Se il documento ha 100 pagine e suddivido per 20 pagine elaborerà la risposta 5 volte. Più alto è il numero e meno volte elaborerà ma la risposta sarà più imprecisa')
st.session_state.numero_generazioni = st.slider(label="Generazioni", min_value = 1, max_value=10, value=1)
st.session_state.enable_history = st.toggle("Storico Messaggi", value=True)
st.session_state.temp = st.slider(label="Creatività", min_value=0.0, max_value=1.0, step=0.1, value=0.9)
st.session_state.max_tokens = st.slider(label="Lunghezza Output", min_value = 2, max_value=4096, step= 32, value=1024)
st.markdown("---")
def export_settings():
st.markdown("# Esportazione")
st.session_state.export_type = st.selectbox('Tipologia', ('Non Esportare', 'Google Documenti', 'Bozza Email'), help='Seleziona la tipologia di esportazione del testo generato')
st.session_state.export_all = st.toggle("Considera tutte le chat", value=False)
if st.button("Esporta", type="primary", use_container_width=True):
esporta_testo(st.session_state.export_type, st.session_state.export_all)
st.markdown("---")
with st.sidebar:
retrieval_settings()
model_settings()
if EFFETTUA_LOGIN_GOOGLE:
export_settings()
st.markdown("""> **Creato da Matteo Bergamelli **""")
def header() :
st.title("Bonsi A.I.", anchor=False)
with st.expander("Cos'è BonsiAI?"):
st.info("""BonsiAI Chat è un ChatBot personalizzato basato su un database vettoriale, funziona secondo il principio della Generazione potenziata da Recupero (RAG).
La sua funzione principale ruota attorno alla gestione di un ampio repository di documenti BonsiAI e fornisce agli utenti risposte in linea con le loro domande.
Questo approccio garantisce una risposta più precisa sulla base della richiesta degli utenti.""")
def chat_box() :
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def formattaPrompt(prompt, systemRole, systemStyle, instruction):
if st.session_state.cerca_online:
systemRole += '. Ti ho fornito una lista di materiali nelle instruction. Devi rispondere sulla base delle informazioni fonrnite!'
input_text = f'''
{{
"input": {{
"role": "system",
"content": "{systemRole}",
"style": "{systemStyle} "
}},
"messages": [
{{
"role": "instructions",
"content": "{instruction} ({systemStyle})"
}},
{{
"role": "user",
"content": "{prompt}"
}}
]
}}
'''
return input_text
def gen_augmented_prompt(prompt, top_k) :
links = ""
embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
db = Chroma(persist_directory='./DB_Decreti', embedding_function=embedding)
docs = db.similarity_search(prompt, k=top_k)
links = []
context = ''
NomeCartellaOriginariaDB = 'Documenti_2\\'
for doc in docs:
testo = doc.page_content.replace('\n', ' ')
context += testo + '\n\n\n'
reference = doc.metadata["source"].replace(NomeCartellaOriginariaDB, '') + ' (Pag. ' + str(doc.metadata["page"]) + ')'
links.append((reference, testo))
return context, links
def get_search_results_int(url):
result = {'title': '', 'description': '', 'url': '', 'body': ''}
try:
if "www.youtube.com" in url:
video_id = url.split("=")[1]
title = 'Video Youtube'
description = ''
transcript = YouTubeTranscriptApi.get_transcript(video_id)
body_content = " ".join([segment["text"] for segment in transcript])
print(video_id)
print(body_content)
result = {'title': title, 'description': body_content, 'url': url, 'body': body_content}
else:
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.title.string if soup.title else "N/A"
description = soup.find('meta', attrs={'name': 'description'})['content'] if soup.find('meta', attrs={'name': 'description'}) else "N/A"
body_content = soup.find('body').get_text() if soup.find('body') else "N/A"
result = {'title': title, 'description': description, 'url': url, 'body': body_content}
except Exception as e:
print(f"Error fetching data from {url}: {e}")
return result
def get_search_results(query, top_k):
results = []
if st.session_state.urls[0] != "":
for i in range(5):
url = st.session_state.urls[i]
if url != "":
results.append(get_search_results_int(url))
else:
for url in search(query, num=top_k, stop=top_k, tbs=st.session_state.tbs_value):
results.append(get_search_results_int(url))
return results
def gen_online_prompt(prompt, top_k) :
links = []
context = ''
results = get_search_results(prompt, top_k)
for i, result in enumerate(results, start=1):
context += result['title'] + '\n' + result['description'] + '\n' + '\n\n' + result['body'].replace('\n','.') + '\n\n------------------------------------------------------------'
links.append((str(i) + '. ' + result['title'], result['description'] + '\n\n' + result['url']))
return context, links
def generate_chat_stream(prompt):
chat_stream = chat(prompt, st.session_state.history,chat_client=CHAT_BOTS[st.session_state.chat_bot]["model"],
temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens, client_openai = st.session_state.client)
return chat_stream
def inserisci_istruzioni(prompt_originale):
links = []
if st.session_state.cerca_online:
with st.spinner("Ricerca Online...."):
time.sleep(1)
st.session_state.instruction, links = gen_online_prompt(prompt=prompt_originale, top_k=st.session_state.numero_siti)
if st.session_state.rag_enabled :
with st.spinner("Ricerca nei Decreti...."):
time.sleep(1)
st.session_state.instruction, links = gen_augmented_prompt(prompt=prompt_originale, top_k=st.session_state.top_k)
if st.session_state.selected_option["tipo"]=='EMAIL':
with st.spinner("Ricerca nelle Email...."):
time.sleep(1)
st.session_state.instruction, links = leggi_gmail(max_results=st.session_state.numero_elementi, data_inizio = st.session_state.data_inizio, data_fine = st.session_state.data_fine)
if st.session_state.selected_option["tipo"]=='CALENDAR':
with st.spinner("Ricerca nel Calendario...."):
time.sleep(1)
st.session_state.instruction, links = leggi_calendario_google(max_results=st.session_state.numero_elementi, data_inizio = st.session_state.data_inizio, data_fine = st.session_state.data_fine)
with st.spinner("Generazione in corso...") :
time.sleep(1)
#st.session_state.instruction = instruction_originale + '\n----------------------------------------------\n' + st.session_state.instruction
return links
def stream_handler(chat_stream, placeholder) :
full_response = ''
for chunk in chat_stream :
if CHAT_BOTS[st.session_state.chat_bot]["model"][:3] == 'gpt':
if chunk.choices[0].delta and chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
else:
if chunk.token.text!='</s>' :
full_response += chunk.token.text
placeholder.markdown(full_response + "▌")
placeholder.markdown(full_response)
return full_response
def show_source(links) :
with st.expander("Mostra fonti") :
for link in links:
reference, testo = link
st.info('##### ' + reference.replace('_', ' ') + '\n\n'+ testo)
def split_text(text, chunk_size):
testo_suddiviso = []
if text == '':
text = ' '
if chunk_size < 100:
chunk_size = 60000
for i in range(0, len(text), chunk_size):
testo_suddiviso.append(text[i:i+chunk_size])
return testo_suddiviso
init_state()
if not st.session_state.login_effettuato and EFFETTUA_LOGIN_GOOGLE:
connetti_google()
if st.session_state.login_effettuato or not EFFETTUA_LOGIN_GOOGLE:
st_javascript("localStorage.removeItem('token');")
init_state()
sidebar()
header()
chat_box()
if prompt := st.chat_input("Chatta con BonsiAI..."):
prompt_originale = prompt
links = inserisci_istruzioni(prompt_originale)
st.session_state.instruction+= ' \n\n' + st.session_state.testo_documenti
instruction_suddivise = split_text(st.session_state.instruction, st.session_state.split*2000)
ruolo_originale = st.session_state.systemRole
ruoli_divisi = ruolo_originale.split("&&")
parte=1
i=1
risposta_completa = ''
full_response = ''
errore_generazione = False
for ruolo_singolo in ruoli_divisi:
for instruction_singola in instruction_suddivise:
for numgen in range(1, st.session_state.numero_generazioni+1):
if i==1:
st.chat_message("user").markdown(prompt_originale + (': Parte ' + str(parte) if i > 1 else ''))
i+=1
prompt = formattaPrompt(prompt_originale, ruolo_singolo, st.session_state.systemStyle, instruction_singola)
print('------------------------------------------------------------------------------------')
print(prompt)
st.session_state.messages.append({"role": "user", "content": prompt_originale})
try:
chat_stream = generate_chat_stream(prompt)
with st.chat_message("assistant"):
placeholder = st.empty()
full_response = stream_handler(chat_stream, placeholder)
if st.session_state.rag_enabled or st.session_state.cerca_online or st.session_state.selected_option["tipo"]=='EMAIL' or st.session_state.selected_option["tipo"]=='CALENDAR':
show_source(links)
if st.session_state.options.get(st.session_state.selected_option_key, {})["tipo"]=='DOCUMENTO':
with st.expander("Mostra Documento") :
st.info('##### ' + st.session_state.selected_documento_key + ' (Parte ' + str(parte) +')'+ '\n\n\n' + instruction_singola)
parte+=1
st.session_state.messages.append({"role": "assistant", "content": full_response})
risposta_completa = risposta_completa + '\n' + full_response
except Exception as e:
print(str(e))
errore_generazione = True
if CHAT_BOTS[st.session_state.chat_bot]["model"][:3] == 'gpt':
st.error('Inserisci una CHIAVE API valida e controlla il CREDITO residuo: https://platform.openai.com/api-keys')
else:
st.error('Modello AI attualmente non disponibile')
if errore_generazione == False:
st.session_state.ultimo_messaggio = full_response
st.session_state.tutti_messaggi += '\n\n' + full_response
if st.session_state.enable_history:
st.session_state.history.append([prompt_originale, full_response])
else:
st.session_state.history.append(['', ''])
st.success('Generazione Completata')
payload = {"domanda": prompt_originale, "risposta": risposta_completa}
json_payload = json.dumps(payload)
response = requests.post(URL_APP_SCRIPT, data=json_payload)