|
import gradio as gr |
|
from transformers import AutoConfig |
|
|
|
|
|
model_list = ["bert-base-uncased", "gpt2", "distilbert-base-uncased"] |
|
|
|
def add_model_to_list(new_model): |
|
if new_model and new_model not in model_list: |
|
model_list.append(new_model) |
|
return model_list |
|
|
|
def create_config(model_name, num_labels, use_cache): |
|
if model_name not in model_list: |
|
model_list.append(model_name) |
|
config = AutoConfig.from_pretrained(model_name, num_labels=num_labels, use_cache=use_cache) |
|
return str(config) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Config Class - Transformers") |
|
with gr.Row(): |
|
model_dropdown = gr.Dropdown(label="Select a Model", choices=model_list, value=model_list[0]) |
|
new_model_input = gr.Textbox(label="Add a New Model", placeholder="Enter model name") |
|
add_model_button = gr.Button("Add Model") |
|
num_labels_input = gr.Number(label="Number of Labels", value=2) |
|
use_cache_input = gr.Checkbox(label="Use Cache", value=True) |
|
output_area = gr.Textbox(label="Config Output") |
|
submit_button = gr.Button("Create Config") |
|
|
|
add_model_button.click(fn=add_model_to_list, inputs=new_model_input, outputs=model_dropdown) |
|
submit_button.click(fn=create_config, inputs=[model_dropdown, num_labels_input, use_cache_input], outputs=output_area) |
|
|
|
demo.launch() |
|
|