FINAL_PROJECT / app.py
Mathildatambun28's picture
Upload 3 files
1b90c77
import streamlit as st
import pandas as pd
import numpy as np
import joblib
st.header('Analisis Deposito Berjangka')
st.write("""
Predicting Customer Deposit
""")
@st.cache_data
def fetch_data():
df = pd.read_csv("bank.csv")
return df
df = fetch_data()
deposit = st.selectbox('deposit', df['deposit'].unique())
duration = st.number_input('duration', value=0)
housing = st.selectbox('housing', df['housing'].unique())
month = st.selectbox('month', df['month'].unique())
pdays = st.number_input('pdays', value=0)
day = st.number_input('day', value=0)
loan = st.number_input('loan', value=0)
poutcome = st.selectbox('poutcome', df['poutcome'].unique())
job = st.selectbox('job', df['job'].unique())
age = st.number_input('age', value=0)
campaign = st.number_input('campaign', value=0)
data = {
'deposit': deposit,
'duration': duration,
'housing': housing,
'month': month,
'pdays': pdays,
'day': day,
'loan': loan,
'poutcome': poutcome,
'job': job,
'age': age,
'campaign': campaign,
}
input = pd.DataFrame(data, index=[0])
st.subheader('Deposit Berjangka')
st.write(input)
load_model = joblib.load("best_model.pkl")
# Mengonversi kategori menjadi nilai numerik
categorical_columns = ['housing', 'month', 'poutcome', 'job']
for col in categorical_columns:
input[col] = df[col].astype('category').cat.codes
if st.button('Hasilnya'):
prediction = load_model.predict(input)
if prediction == 0:
prediction = 'Deposit'
else:
prediction = 'Tidak Deposit'
st.write('Berdasarkan data pelanggan, prediksi prioritas adalah:')
st.write(prediction)