Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,26 +1,52 @@ | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
            -
            from transformers import AutoTokenizer,  | 
| 3 | 
             
            from langchain.schema import AIMessage, HumanMessage, SystemMessage
         | 
| 4 |  | 
|  | |
|  | |
|  | |
| 5 | 
             
            st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
         | 
| 6 | 
             
            st.header("MHRV Chatbot")
         | 
| 7 |  | 
|  | |
|  | |
|  | |
| 8 | 
             
            if "sessionMessages" not in st.session_state:
         | 
| 9 | 
             
                st.session_state.sessionMessages = [
         | 
| 10 | 
            -
                    SystemMessage( | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 11 | 
             
                ]
         | 
| 12 |  | 
| 13 | 
            -
            #  | 
| 14 | 
            -
             | 
|  | |
|  | |
| 15 | 
             
            tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 16 | 
            -
            model =  | 
| 17 |  | 
| 18 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 19 |  | 
|  | |
|  | |
|  | |
| 20 | 
             
            def load_answer(question):
         | 
| 21 | 
             
                st.session_state.sessionMessages.append(HumanMessage(content=question))
         | 
| 22 |  | 
| 23 | 
            -
                #  | 
| 24 | 
             
                prompt = ""
         | 
| 25 | 
             
                for msg in st.session_state.sessionMessages:
         | 
| 26 | 
             
                    if isinstance(msg, SystemMessage):
         | 
| @@ -30,9 +56,9 @@ def load_answer(question): | |
| 30 | 
             
                    elif isinstance(msg, AIMessage):
         | 
| 31 | 
             
                        prompt += f"AI: {msg.content}\n"
         | 
| 32 |  | 
| 33 | 
            -
                # Generate  | 
| 34 | 
            -
                output = generator(prompt)
         | 
| 35 | 
            -
                answer_text = output[0]["generated_text"].strip()
         | 
| 36 |  | 
| 37 | 
             
                st.session_state.sessionMessages.append(AIMessage(content=answer_text))
         | 
| 38 | 
             
                return answer_text
         | 
| @@ -40,6 +66,9 @@ def load_answer(question): | |
| 40 | 
             
            def get_text():
         | 
| 41 | 
             
                return st.text_input("You: ", key="input")
         | 
| 42 |  | 
|  | |
|  | |
|  | |
| 43 | 
             
            user_input = get_text()
         | 
| 44 | 
             
            submit = st.button("Generate")
         | 
| 45 |  | 
|  | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
         | 
| 3 | 
             
            from langchain.schema import AIMessage, HumanMessage, SystemMessage
         | 
| 4 |  | 
| 5 | 
            +
            # ------------------------
         | 
| 6 | 
            +
            # Streamlit UI
         | 
| 7 | 
            +
            # ------------------------
         | 
| 8 | 
             
            st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
         | 
| 9 | 
             
            st.header("MHRV Chatbot")
         | 
| 10 |  | 
| 11 | 
            +
            # ------------------------
         | 
| 12 | 
            +
            # Session memory
         | 
| 13 | 
            +
            # ------------------------
         | 
| 14 | 
             
            if "sessionMessages" not in st.session_state:
         | 
| 15 | 
             
                st.session_state.sessionMessages = [
         | 
| 16 | 
            +
                    SystemMessage(
         | 
| 17 | 
            +
                        content=(
         | 
| 18 | 
            +
                            "You are a highly intelligent and helpful customer support assistant. "
         | 
| 19 | 
            +
                            "Answer user questions clearly, politely, and professionally. "
         | 
| 20 | 
            +
                            "If you don’t know the answer, say so instead of making things up. "
         | 
| 21 | 
            +
                            "Provide step-by-step instructions if relevant and helpful."
         | 
| 22 | 
            +
                        )
         | 
| 23 | 
            +
                    )
         | 
| 24 | 
             
                ]
         | 
| 25 |  | 
| 26 | 
            +
            # ------------------------
         | 
| 27 | 
            +
            # Load model and tokenizer
         | 
| 28 | 
            +
            # ------------------------
         | 
| 29 | 
            +
            model_name = "bigscience/bloom-560m"  # CPU-compatible
         | 
| 30 | 
             
            tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 31 | 
            +
            model = AutoModelForCausalLM.from_pretrained(model_name)
         | 
| 32 |  | 
| 33 | 
            +
            # Create text-generation pipeline
         | 
| 34 | 
            +
            generator = pipeline(
         | 
| 35 | 
            +
                "text-generation",
         | 
| 36 | 
            +
                model=model,
         | 
| 37 | 
            +
                tokenizer=tokenizer,
         | 
| 38 | 
            +
                device=-1,  # CPU
         | 
| 39 | 
            +
                max_new_tokens=256,
         | 
| 40 | 
            +
                temperature=0.3
         | 
| 41 | 
            +
            )
         | 
| 42 |  | 
| 43 | 
            +
            # ------------------------
         | 
| 44 | 
            +
            # Helper functions
         | 
| 45 | 
            +
            # ------------------------
         | 
| 46 | 
             
            def load_answer(question):
         | 
| 47 | 
             
                st.session_state.sessionMessages.append(HumanMessage(content=question))
         | 
| 48 |  | 
| 49 | 
            +
                # Build prompt from session messages
         | 
| 50 | 
             
                prompt = ""
         | 
| 51 | 
             
                for msg in st.session_state.sessionMessages:
         | 
| 52 | 
             
                    if isinstance(msg, SystemMessage):
         | 
|  | |
| 56 | 
             
                    elif isinstance(msg, AIMessage):
         | 
| 57 | 
             
                        prompt += f"AI: {msg.content}\n"
         | 
| 58 |  | 
| 59 | 
            +
                # Generate answer
         | 
| 60 | 
            +
                output = generator(prompt, max_new_tokens=256, do_sample=True, temperature=0.3)
         | 
| 61 | 
            +
                answer_text = output[0]["generated_text"][len(prompt):].strip()
         | 
| 62 |  | 
| 63 | 
             
                st.session_state.sessionMessages.append(AIMessage(content=answer_text))
         | 
| 64 | 
             
                return answer_text
         | 
|  | |
| 66 | 
             
            def get_text():
         | 
| 67 | 
             
                return st.text_input("You: ", key="input")
         | 
| 68 |  | 
| 69 | 
            +
            # ------------------------
         | 
| 70 | 
            +
            # Main app
         | 
| 71 | 
            +
            # ------------------------
         | 
| 72 | 
             
            user_input = get_text()
         | 
| 73 | 
             
            submit = st.button("Generate")
         | 
| 74 |  |