Mathdesenvnonimate commited on
Commit
2557ffa
·
verified ·
1 Parent(s): f997da9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -15
app.py CHANGED
@@ -194,13 +194,9 @@ def process(input_image, prompt, prompt_neg='', input_elevation=0, input_num_ste
194
 
195
  # gradio UI
196
 
197
- _TITLE = '''LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation'''
198
 
199
  _DESCRIPTION = '''
200
- <div>
201
- <a style="display:inline-block" href="https://me.kiui.moe/lgm/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
202
- <a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/LGM"><img src='https://img.shields.io/github/stars/3DTopia/LGM?style=social'/></a>
203
- </div>
204
 
205
  * Se você achar o resultado insatisfatório, tente mudar a barra de seeds!
206
  * O video é uma representação Parcial, o Resultado sera aprimorado por tecnicas de modelagem!
@@ -216,27 +212,25 @@ with block:
216
  with gr.Row(variant='panel'):
217
  with gr.Column(scale=1):
218
  # input image
219
- input_image = gr.Image(label="image", type='pil')
220
  # input prompt
221
  input_text = gr.Textbox(label="prompt")
222
  # negative prompt
223
- input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
224
  # elevation
225
- input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
226
  # inference steps
227
- input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30)
228
  # random seed
229
- input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
230
  # gen button
231
- button_gen = gr.Button("Generate")
232
 
233
 
234
  with gr.Column(scale=1):
235
  with gr.Tab("Video"):
236
  # final video results
237
  output_video = gr.Video(label="video")
238
- # ply file
239
- output_file = gr.File(label="3D Gaussians (ply format)")
240
  with gr.Tab("Multi-view Image"):
241
  # multi-view results
242
  output_image = gr.Image(interactive=False, show_label=False)
@@ -256,7 +250,7 @@ with block:
256
  outputs=[output_image, output_video, output_file],
257
  fn=lambda x: process(input_image=x, prompt=''),
258
  cache_examples=True,
259
- label='Image-to-3D Examples'
260
  )
261
 
262
  gr.Examples(
@@ -273,7 +267,7 @@ with block:
273
  outputs=[output_image, output_video, output_file],
274
  fn=lambda x: process(input_image=None, prompt=x),
275
  cache_examples=True,
276
- label='Text-to-3D Examples'
277
  )
278
 
279
  block.launch()
 
194
 
195
  # gradio UI
196
 
197
+ _TITLE = '''LGM'''
198
 
199
  _DESCRIPTION = '''
 
 
 
 
200
 
201
  * Se você achar o resultado insatisfatório, tente mudar a barra de seeds!
202
  * O video é uma representação Parcial, o Resultado sera aprimorado por tecnicas de modelagem!
 
212
  with gr.Row(variant='panel'):
213
  with gr.Column(scale=1):
214
  # input image
215
+ input_image = gr.Image(label="imagem", type='pil')
216
  # input prompt
217
  input_text = gr.Textbox(label="prompt")
218
  # negative prompt
219
+ input_neg_text = gr.Textbox(label="prompt negativo", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
220
  # elevation
221
+ input_elevation = gr.Slider(label="elevação", minimum=-90, maximum=90, step=1, value=0)
222
  # inference steps
223
+ input_num_steps = gr.Slider(label="passos de inferencia", minimum=1, maximum=100, step=1, value=30)
224
  # random seed
225
+ input_seed = gr.Slider(label="seed aleatoria", minimum=0, maximum=100000, step=1, value=0)
226
  # gen button
227
+ button_gen = gr.Button("Gerar")
228
 
229
 
230
  with gr.Column(scale=1):
231
  with gr.Tab("Video"):
232
  # final video results
233
  output_video = gr.Video(label="video")
 
 
234
  with gr.Tab("Multi-view Image"):
235
  # multi-view results
236
  output_image = gr.Image(interactive=False, show_label=False)
 
250
  outputs=[output_image, output_video, output_file],
251
  fn=lambda x: process(input_image=x, prompt=''),
252
  cache_examples=True,
253
+ label='Image-to-3D Exemplos'
254
  )
255
 
256
  gr.Examples(
 
267
  outputs=[output_image, output_video, output_file],
268
  fn=lambda x: process(input_image=None, prompt=x),
269
  cache_examples=True,
270
+ label='Text-to-3D Exemplos'
271
  )
272
 
273
  block.launch()