Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from dotenv import load_dotenv | |
from openai import OpenAI | |
from prompts.initial_prompt import INITIAL_PROMPT | |
from prompts.main_prompt import MAIN_PROMPT, PROBLEM_SOLUTIONS_PROMPT # Ensure both are imported | |
# Load the API key from the .env file if available | |
if os.path.exists(".env"): | |
load_dotenv(".env") | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
client = OpenAI(api_key=OPENAI_API_KEY) | |
def gpt_call(history, user_message, | |
model="gpt-4o", | |
max_tokens=3000, # Increased to 3000 to prevent truncation | |
temperature=0.7, | |
top_p=0.95): | |
""" | |
Calls the OpenAI API to generate a response. | |
- history: [(user_text, assistant_text), ...] | |
- user_message: The latest user message | |
""" | |
# 1) Start with the system message (MAIN_PROMPT) for context | |
messages = [{"role": "system", "content": MAIN_PROMPT}] | |
# 2) Append conversation history | |
for user_text, assistant_text in history: | |
if user_text: | |
messages.append({"role": "user", "content": user_text}) | |
if assistant_text: | |
messages.append({"role": "assistant", "content": assistant_text}) | |
# 3) Add the user's new message | |
messages.append({"role": "user", "content": user_message}) | |
# 4) Call OpenAI API (with continuation handling) | |
full_response = "" | |
while True: | |
completion = client.chat.completions.create( | |
model=model, | |
messages=messages, | |
max_tokens=max_tokens, # Increased to allow longer responses | |
temperature=temperature, | |
top_p=top_p | |
) | |
response_part = completion.choices[0].message.content.strip() | |
full_response += " " + response_part | |
# If the response looks incomplete, force the AI to continue | |
if len(response_part) < max_tokens - 50: # Ensures near full completion | |
break # Stop loop if response is complete | |
# Add last response back into conversation history to continue it | |
messages.append({"role": "assistant", "content": response_part}) | |
return full_response.strip() | |
def respond(user_message, history): | |
""" | |
Handles user input and gets GPT-generated response. | |
- user_message: The message from the user | |
- history: List of (user, assistant) conversation history | |
""" | |
if not user_message: | |
return "", history | |
# If the user asks for a solution, inject PROBLEM_SOLUTIONS_PROMPT | |
if "solution" in user_message.lower(): | |
assistant_reply = gpt_call(history, PROBLEM_SOLUTIONS_PROMPT) | |
else: | |
assistant_reply = gpt_call(history, user_message) | |
# Add conversation turn to history | |
history.append((user_message, assistant_reply)) | |
return "", history | |
############################## | |
# Gradio Blocks UI | |
############################## | |
with gr.Blocks() as demo: | |
gr.Markdown("## AI-Guided Math PD Chatbot") | |
# Chatbot initialization with the first AI message | |
chatbot = gr.Chatbot( | |
value=[("", INITIAL_PROMPT)], # Initial system prompt | |
height=500 | |
) | |
# Stores the chat history | |
state_history = gr.State([("", INITIAL_PROMPT)]) | |
# User input field | |
user_input = gr.Textbox( | |
placeholder="Type your message here...", | |
label="Your Input" | |
) | |
# Submit action | |
user_input.submit( | |
respond, | |
inputs=[user_input, state_history], | |
outputs=[user_input, chatbot] | |
).then( | |
fn=lambda _, h: h, | |
inputs=[user_input, chatbot], | |
outputs=[state_history] | |
) | |
# Run the Gradio app | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |