Upload Rag_milvus.py
Browse files- src/Rag_milvus.py +97 -0
src/Rag_milvus.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
2 |
+
from langchain.schema import Document
|
3 |
+
from qdrant_client import QdrantClient
|
4 |
+
from qdrant_client.models import PointStruct, Distance, VectorParams
|
5 |
+
import fitz # PyMuPDF
|
6 |
+
from qdrant_client import QdrantClient
|
7 |
+
import numpy as np
|
8 |
+
import streamlit as st
|
9 |
+
|
10 |
+
def pdfachunk(file, chunk_size_pages=20):
|
11 |
+
# Usar el buffer binario del archivo subido
|
12 |
+
doc = fitz.open(stream=file.read(), filetype="pdf")
|
13 |
+
chunks = []
|
14 |
+
for i in range(0, len(doc), chunk_size_pages):
|
15 |
+
text = ""
|
16 |
+
for page_num in range(i, min(i + chunk_size_pages, len(doc))):
|
17 |
+
text += doc[page_num].get_text()
|
18 |
+
chunks.append(text)
|
19 |
+
doc.close()
|
20 |
+
return chunks
|
21 |
+
|
22 |
+
def split_chunks(raw_chunks, chunk_size=1024, chunk_overlap=100):
|
23 |
+
docs = [Document(page_content=chunk) for chunk in raw_chunks]
|
24 |
+
splitter = RecursiveCharacterTextSplitter(
|
25 |
+
chunk_size=chunk_size,
|
26 |
+
chunk_overlap=chunk_overlap,
|
27 |
+
separators=["\n\n", "\n", ".", " "]
|
28 |
+
)
|
29 |
+
return splitter.split_documents(docs)
|
30 |
+
|
31 |
+
def generaremben(model, texts):
|
32 |
+
texts = [t for t in texts if t.strip()] # filtra vacíos
|
33 |
+
if not texts:
|
34 |
+
raise ValueError("No hay textos válidos para generar embeddings.")
|
35 |
+
return model.encode(texts, batch_size=16, show_progress_bar=True)
|
36 |
+
|
37 |
+
def insertarenqdra(embeddings, texts, nombre_coleccion):
|
38 |
+
client = QdrantClient(path="./data_v2") # persistente
|
39 |
+
|
40 |
+
dim = len(embeddings[0])
|
41 |
+
client.recreate_collection(
|
42 |
+
collection_name=nombre_coleccion,
|
43 |
+
vectors_config=VectorParams(size=dim, distance=Distance.COSINE)
|
44 |
+
)
|
45 |
+
|
46 |
+
points = [
|
47 |
+
PointStruct(id=i, vector=embeddings[i].tolist(), payload={"text": texts[i]})
|
48 |
+
for i in range(len(embeddings))
|
49 |
+
]
|
50 |
+
|
51 |
+
client.upsert(collection_name=nombre_coleccion, points=points)
|
52 |
+
print(f"✅ Insertados {len(points)} vectores en Qdrant.")
|
53 |
+
|
54 |
+
def query_qdrant(query, model, nombre_coleccion, top_k, umbral):
|
55 |
+
query_embedding = generaremben(model, [query])[0]
|
56 |
+
|
57 |
+
|
58 |
+
query_embedding = np.array(query_embedding).tolist()
|
59 |
+
|
60 |
+
client = QdrantClient(path="./data_v2")
|
61 |
+
|
62 |
+
results = client.query_points(
|
63 |
+
collection_name=nombre_coleccion,
|
64 |
+
query=query_embedding,
|
65 |
+
limit=top_k,
|
66 |
+
with_payload=True,
|
67 |
+
score_threshold=umbral
|
68 |
+
)
|
69 |
+
|
70 |
+
return results
|
71 |
+
|
72 |
+
def query_qdrant_sinumbral(query, model, nombre_coleccion, top_k=5):
|
73 |
+
query_embedding = generaremben(model, [query])[0]
|
74 |
+
|
75 |
+
|
76 |
+
query_embedding = np.array(query_embedding).tolist()
|
77 |
+
|
78 |
+
client = QdrantClient(path="./data_v2")
|
79 |
+
|
80 |
+
results = client.query_points(
|
81 |
+
collection_name=nombre_coleccion,
|
82 |
+
query=query_embedding,
|
83 |
+
limit=top_k,
|
84 |
+
with_payload=True,
|
85 |
+
)
|
86 |
+
|
87 |
+
return results
|
88 |
+
|
89 |
+
|
90 |
+
def obtener_colecciones(path="./data_v2"):
|
91 |
+
client = QdrantClient(path=path)
|
92 |
+
collections = [col.name for col in client.get_collections().collections]
|
93 |
+
return ["Todas las colecciones"] + collections
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|