|
import streamlit as st |
|
from Rag_milvus import query_qdrant, obtener_colecciones, query_qdrant_sinumbral |
|
from Llm_local import get_response_from_mistral, generarPages |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
st.title("ProcurIA") |
|
|
|
st.sidebar.title("Men煤 de Funciones") |
|
generarPages() |
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [{"role": "assistant", "content": "Hola!, en que puedo ayudarte?"}] |
|
|
|
|
|
model = SentenceTransformer("all-MiniLM-L6-v2") |
|
|
|
|
|
colecciones = obtener_colecciones() |
|
coleccion_seleccionada = st.sidebar.selectbox("Selecciona una colecci贸n", colecciones) |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
if prompt := st.chat_input("Escribe tus dudas"): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
with st.chat_message("assistant"): |
|
if coleccion_seleccionada == "Todas las colecciones": |
|
colecciones_disponibles = obtener_colecciones() |
|
results = [] |
|
umbral=1 |
|
for coleccion in colecciones_disponibles[1:]: |
|
coleccion_results = query_qdrant_sinumbral(prompt,model,coleccion) |
|
results.extend(coleccion_results) |
|
else: |
|
umbral=0.56 |
|
results = query_qdrant(prompt, model, coleccion_seleccionada,5,umbral) |
|
|
|
if not results: |
|
response = "Disculpa, no tengo informaci贸n para responder esa pregunta." |
|
else: |
|
response = st.write_stream(get_response_from_mistral(prompt, results)) |
|
|
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
st.write(results) |