desert
commited on
Commit
·
2af305a
1
Parent(s):
408d189
init inference
Browse files
app.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("Mat17892/llama_lora_G14")
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -15,47 +14,40 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
for
|
21 |
-
if
|
22 |
-
|
23 |
-
if
|
24 |
-
|
25 |
-
prompt += f"User: {message}\nAssistant:"
|
26 |
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
for token in client.text_generation(
|
30 |
-
prompt,
|
31 |
-
max_new_tokens=max_tokens,
|
32 |
-
stream=True,
|
33 |
-
temperature=temperature,
|
34 |
-
top_p=top_p,
|
35 |
-
):
|
36 |
-
response += token.token
|
37 |
-
yield response
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
demo = gr.ChatInterface(
|
43 |
respond,
|
44 |
-
type="messages",
|
45 |
additional_inputs=[
|
46 |
-
gr.Textbox(value="You are a friendly
|
47 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
48 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
49 |
-
gr.Slider(
|
50 |
-
minimum=0.1,
|
51 |
-
maximum=1.0,
|
52 |
-
value=0.95,
|
53 |
-
step=0.05,
|
54 |
-
label="Top-p (nucleus sampling)",
|
55 |
-
),
|
56 |
],
|
57 |
)
|
58 |
|
59 |
-
|
60 |
if __name__ == "__main__":
|
61 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Load your model and tokenizer
|
5 |
+
model_name = "Mat17892/llama_lora_model_1" # Replace with your Hugging Face model name
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
9 |
def respond(
|
10 |
message,
|
|
|
14 |
temperature,
|
15 |
top_p,
|
16 |
):
|
17 |
+
messages = [{"role": "system", "content": system_message}]
|
18 |
+
|
19 |
+
for val in history:
|
20 |
+
if val[0]:
|
21 |
+
messages.append({"role": "user", "content": val[0]})
|
22 |
+
if val[1]:
|
23 |
+
messages.append({"role": "assistant", "content": val[1]})
|
|
|
24 |
|
25 |
+
messages.append({"role": "user", "content": message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Prepare input for the model
|
28 |
+
input_text = message
|
29 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
30 |
+
|
31 |
+
# Generate response
|
32 |
+
outputs = model.generate(
|
33 |
+
**inputs,
|
34 |
+
max_new_tokens=max_tokens,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p
|
37 |
+
)
|
38 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
+
return response
|
40 |
+
|
41 |
+
# Create the Gradio interface
|
42 |
demo = gr.ChatInterface(
|
43 |
respond,
|
|
|
44 |
additional_inputs=[
|
45 |
+
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
|
46 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
47 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
48 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
],
|
50 |
)
|
51 |
|
|
|
52 |
if __name__ == "__main__":
|
53 |
+
demo.launch()
|