|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import time |
|
import logging |
|
import argparse |
|
import subprocess |
|
import random |
|
import unicodedata |
|
|
|
from pathlib import Path |
|
from typing import Any, Iterator, cast |
|
from typing_extensions import Buffer |
|
|
|
import cffi |
|
from transformers import AutoTokenizer, PreTrainedTokenizer |
|
|
|
|
|
logger = logging.getLogger("test-tokenizer-random") |
|
|
|
|
|
class LibLlama: |
|
|
|
DEFAULT_PATH_LLAMA_H = "./include/llama.h" |
|
DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"] |
|
DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" |
|
|
|
def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None): |
|
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H |
|
path_includes = path_includes or self.DEFAULT_PATH_INCLUDES |
|
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA |
|
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama) |
|
self.lib.llama_backend_init() |
|
|
|
def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]: |
|
cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="] |
|
cmd += ["-I" + path for path in path_includes] + [path_llama_h] |
|
res = subprocess.run(cmd, stdout=subprocess.PIPE) |
|
assert (res.returncode == 0) |
|
source = res.stdout.decode() |
|
ffi = cffi.FFI() |
|
if True: |
|
source = "typedef struct { } __builtin_va_list;" + "\n" + source |
|
source = source.replace("sizeof (int)", str(ffi.sizeof("int"))) |
|
source = source.replace("sizeof (void *)", str(ffi.sizeof("void*"))) |
|
source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t"))) |
|
source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t"))) |
|
ffi.cdef(source, override=True) |
|
lib = ffi.dlopen(path_libllama) |
|
return (ffi, lib) |
|
|
|
def model_default_params(self, **kwargs): |
|
mparams = self.lib.llama_model_default_params() |
|
for k, v in kwargs.items(): |
|
setattr(mparams, k, v) |
|
return mparams |
|
|
|
def context_default_params(self, **kwargs): |
|
cparams = self.lib.llama_context_default_params() |
|
for k, v in kwargs.items(): |
|
setattr(cparams, k, v) |
|
return cparams |
|
|
|
|
|
class LibLlamaModel: |
|
|
|
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}): |
|
self.lib: Any = libllama.lib |
|
self.ffi = libllama.ffi |
|
if isinstance(mparams, dict): |
|
mparams = libllama.model_default_params(**mparams) |
|
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams) |
|
if not self.model: |
|
raise RuntimeError("error: failed to load model '%s'" % path_model) |
|
if isinstance(cparams, dict): |
|
cparams = libllama.context_default_params(**cparams) |
|
self.ctx = self.lib.llama_new_context_with_model(self.model, cparams) |
|
if not self.ctx: |
|
raise RuntimeError("error: failed to create context for model '%s'" % path_model) |
|
n_tokens_max = self.lib.llama_n_ctx(self.ctx) |
|
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max) |
|
self.text_buff = self.ffi.new("uint8_t[]", 1024) |
|
|
|
def free(self): |
|
if self.ctx: |
|
self.lib.llama_free(self.ctx) |
|
if self.model: |
|
self.lib.llama_free_model(self.model) |
|
self.ctx = None |
|
self.model = None |
|
self.lib = None |
|
|
|
def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]: |
|
encoded_text: bytes = text.encode("utf-8") |
|
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) |
|
while num < 0 and len(self.token_ids) < (16 << 20): |
|
self.token_ids = self.ffi.new("llama_token[]", -2 * num) |
|
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special) |
|
return list(self.token_ids[0:num]) |
|
|
|
def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str: |
|
if len(self.token_ids) < len(ids): |
|
self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids)) |
|
for i, id in enumerate(ids): |
|
self.token_ids[i] = id |
|
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) |
|
while num < 0 and len(self.text_buff) < (16 << 20): |
|
self.text_buff = self.ffi.new("uint8_t[]", -2 * num) |
|
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special) |
|
return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") |
|
|
|
|
|
class Tokenizer: |
|
|
|
def encode(self, text: str) -> list[int]: |
|
raise NotImplementedError |
|
|
|
def decode(self, ids: list[int]) -> str: |
|
raise NotImplementedError |
|
|
|
|
|
class TokenizerGroundtruth (Tokenizer): |
|
|
|
def __init__(self, dir_tokenizer: str): |
|
self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer) |
|
|
|
ids = self.encode("a") |
|
assert 1 <= len(ids) <= 3 |
|
add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0] |
|
add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1] |
|
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token) |
|
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token) |
|
|
|
tokens = list(self.model.get_vocab().values()) |
|
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True) |
|
self.vocab = list(sorted(self.vocab)) |
|
|
|
self.special_tokens = list(self.model.all_special_tokens) |
|
self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False) |
|
self.bos_token = self.model.bos_token |
|
self.eos_token = self.model.eos_token |
|
|
|
def encode(self, text: str) -> list[int]: |
|
return self.model.encode(text, add_special_tokens=True) |
|
|
|
def decode(self, ids: list[int]) -> str: |
|
return self.model.decode(ids, skip_special_tokens=False) |
|
|
|
|
|
class TokenizerLlamaCpp (Tokenizer): |
|
|
|
libllama: LibLlama | None = None |
|
|
|
def __init__(self, vocab_file: str): |
|
if not self.libllama: |
|
self.libllama = LibLlama() |
|
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096)) |
|
|
|
def encode(self, text: str) -> list[int]: |
|
return self.model.tokenize(text, add_special=True, parse_special=True) |
|
|
|
def decode(self, ids: list[int]) -> str: |
|
return self.model.detokenize(ids, remove_special=False, unparse_special=True) |
|
|
|
|
|
def generator_custom_text() -> Iterator[str]: |
|
"""General tests""" |
|
yield from [ |
|
"", |
|
" ", |
|
" ", |
|
" ", |
|
"\t", |
|
"\n", |
|
"\n\n", |
|
"\n\n\n", |
|
"\t\n", |
|
"Hello world", |
|
" Hello world", |
|
"Hello World", |
|
" Hello World", |
|
" Hello World!", |
|
"Hello, world!", |
|
" Hello, world!", |
|
" this is 🦙.cpp", |
|
"w048 7tuijk dsdfhu", |
|
"нещо на Български", |
|
"កាន់តែពិសេសអាចខលចេញ", |
|
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", |
|
"Hello", |
|
" Hello", |
|
" Hello", |
|
" Hello", |
|
" Hello", |
|
" Hello\n Hello", |
|
" (", |
|
"\n =", |
|
"' era", |
|
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", |
|
"3", |
|
"33", |
|
"333", |
|
"3333", |
|
"33333", |
|
"333333", |
|
"3333333", |
|
"33333333", |
|
"333333333", |
|
] |
|
|
|
|
|
def generator_custom_text_edge_cases() -> Iterator[str]: |
|
"""Edge cases found while debugging""" |
|
yield from [ |
|
'\x1f-a', |
|
'¼-a', |
|
'½-a', |
|
'¾-a', |
|
'a 〇b', |
|
'Ⅵ-a', |
|
'\uFEFF//', |
|
'Cửa Việt', |
|
'<s>a', |
|
'<unk><|endoftext|><s>', |
|
'a\na', |
|
'"`', |
|
' \u2e4e', |
|
'\n\x0b ', |
|
'a\xa0\xa0\x00b', |
|
'one <mask>', |
|
'a </s> b', |
|
'a <mask> b', |
|
'\xa0aC', |
|
'\u2029 \uA3E4', |
|
"a ?", |
|
'å', |
|
'\U000ac517', |
|
'\U000522f4', |
|
"<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>", |
|
"<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>", |
|
] |
|
|
|
|
|
def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]: |
|
"""Brute force check all vocab words""" |
|
yield from tokenizer.vocab |
|
|
|
|
|
def generator_ascii_lr_strip() -> Iterator[str]: |
|
WHITESPACES = ["", " ", " "] |
|
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""] |
|
for char1 in CHARACTERS: |
|
for char2 in CHARACTERS: |
|
for lstrip in WHITESPACES: |
|
for rstrip in WHITESPACES: |
|
yield lstrip + char1 + char2 + rstrip |
|
yield lstrip + char1 + rstrip + char2 |
|
yield char1 + lstrip + char2 + rstrip |
|
|
|
|
|
def generator_apostrophe() -> Iterator[str]: |
|
WHITESPACES = ["", " ", " "] |
|
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""] |
|
for char1 in CHARACTERS: |
|
for char2 in CHARACTERS: |
|
for lstrip in WHITESPACES: |
|
for rstrip in WHITESPACES: |
|
yield char1 + lstrip + "'" + rstrip + char2 |
|
yield char1 + char2 + lstrip + "'" + rstrip + "z" |
|
yield "a" + lstrip + "'" + rstrip + char1 + char2 |
|
|
|
|
|
def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]: |
|
WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"] |
|
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens))) |
|
for token in all_tokens: |
|
for lstrip in WHITESPACES: |
|
for rstrip in WHITESPACES: |
|
yield lstrip + token + rstrip |
|
yield "a" + lstrip + token + rstrip |
|
yield lstrip + token + rstrip + "z" |
|
yield "a" + lstrip + token + rstrip + "z" |
|
|
|
|
|
def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: |
|
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"] |
|
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations))) |
|
rand = random.Random() |
|
for m in range(iterations): |
|
rand.seed(m) |
|
words = rand.choices(all_tokens, k=500) |
|
if words and words[0] == tokenizer.bos_token: |
|
while len(words) > 1 and words[1] == tokenizer.bos_token: |
|
words.pop(0) |
|
if tokenizer.add_bos_token: |
|
words.pop(0) |
|
if words and words[-1] == tokenizer.eos_token: |
|
while len(words) > 1 and words[-2] == tokenizer.eos_token: |
|
words.pop(-1) |
|
if tokenizer.add_bos_token: |
|
words.pop(-1) |
|
yield "".join(words) |
|
|
|
|
|
def generator_random_chars(iterations=100) -> Iterator[str]: |
|
"""Brute force random text with simple characters""" |
|
|
|
NUM_WORDS = 400 |
|
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5) |
|
CHARS = list(sorted(set(""" |
|
ABCDEFGHIJKLMNOPQRSTUVWXYZ |
|
abcdefghijklmnopqrstuvwxyz |
|
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ |
|
áéíóúàèìòùâêîôûäëïöü |
|
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_ |
|
"""))) |
|
|
|
rand = random.Random() |
|
for m in range(iterations): |
|
rand.seed(m) |
|
text = [] |
|
for _ in range(NUM_WORDS): |
|
k = rand.randint(1, 7) |
|
word = rand.choices(CHARS, k=k) |
|
word.append(rand.choice(WHITESPACES)) |
|
text.append("".join(word)) |
|
yield "".join(text) |
|
|
|
|
|
def generator_unicodes() -> Iterator[str]: |
|
"""Iterate unicode characters""" |
|
|
|
MAX_CODEPOINTS = 0x30000 |
|
|
|
def _valid(cpt): |
|
if cpt >= 0x30000: |
|
return False |
|
|
|
|
|
if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): |
|
return False |
|
return True |
|
|
|
characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)] |
|
|
|
yield from characters |
|
|
|
|
|
def generator_random_unicodes(iterations=100) -> Iterator[str]: |
|
"""Brute force random text with unicode characters""" |
|
|
|
NUM_WORDS = 200 |
|
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5) |
|
|
|
characters = list(generator_unicodes()) |
|
|
|
rand = random.Random() |
|
for m in range(iterations): |
|
rand.seed(m) |
|
text = [] |
|
for _ in range(NUM_WORDS): |
|
k = rand.randint(1, 7) |
|
word = rand.choices(characters, k=k) |
|
word.append(rand.choice(WHITESPACES)) |
|
text.append("".join(word)) |
|
yield "".join(text) |
|
|
|
|
|
def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: |
|
"""Brute force random text with vocab characters""" |
|
|
|
vocab_chars = set() |
|
for word in tokenizer.vocab: |
|
vocab_chars.update(word) |
|
vocab_chars = list(sorted(vocab_chars)) |
|
|
|
rand = random.Random() |
|
for m in range(iterations): |
|
rand.seed(m) |
|
text = rand.choices(vocab_chars, k=1024) |
|
yield "".join(text) |
|
|
|
|
|
def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]: |
|
"""Brute force random text from vocab words""" |
|
|
|
vocab = [w.strip() for w in tokenizer.vocab] |
|
yield from vocab |
|
|
|
rand = random.Random() |
|
for m in range(iterations): |
|
rand.seed(m) |
|
text = [] |
|
num_words = rand.randint(300, 400) |
|
for i in range(num_words): |
|
k = rand.randint(1, 3) |
|
words = rand.choices(vocab, k=k) |
|
sep = rand.choice(" \n\r\t") |
|
text.append("".join(words) + sep) |
|
yield "".join(text) |
|
|
|
|
|
def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]): |
|
|
|
def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str): |
|
for i, (a, b) in enumerate(zip(ids1, ids2)): |
|
if a != b: |
|
return i |
|
if len(ids1) == len(ids2): |
|
return -1 |
|
return min(len(ids1), len(ids2)) |
|
|
|
def check_detokenizer(text: str, text1: str, text2: str) -> bool: |
|
if text1 == text2: |
|
return True |
|
|
|
if tokenizer1.add_bos_token: |
|
if text2.startswith(tokenizer1.bos_token): |
|
text2 = text2[len(tokenizer1.bos_token):] |
|
if tokenizer1.add_eos_token: |
|
if text2.endswith(tokenizer1.eos_token): |
|
text2 = text2[:-len(tokenizer1.eos_token)] |
|
return text == text2 |
|
|
|
t_encode1 = 0 |
|
t_encode2 = 0 |
|
t_decode1 = 0 |
|
t_decode2 = 0 |
|
t_start = time.perf_counter() |
|
encode_errors = 0 |
|
decode_errors = 0 |
|
MAX_ERRORS = 10 |
|
|
|
logger.info("%s: %s" % (generator.__qualname__, "ini")) |
|
for text in generator: |
|
|
|
|
|
t0 = time.perf_counter() |
|
ids1 = tokenizer1.encode(text) |
|
t1 = time.perf_counter() |
|
ids2 = tokenizer2.encode(text) |
|
t2 = time.perf_counter() |
|
text1 = tokenizer1.decode(ids1) |
|
t3 = time.perf_counter() |
|
text2 = tokenizer2.decode(ids1) |
|
t4 = time.perf_counter() |
|
t_encode1 += t1 - t0 |
|
t_encode2 += t2 - t1 |
|
t_decode1 += t3 - t2 |
|
t_decode2 += t4 - t3 |
|
if encode_errors < MAX_ERRORS and ids1 != ids2: |
|
i = find_first_mismatch(ids1, ids2) |
|
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1] |
|
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1] |
|
logger.error(" Expected: " + str(ids1)) |
|
logger.error(" Result: " + str(ids2)) |
|
encode_errors += 1 |
|
logger.error(f" {encode_errors=}") |
|
if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2): |
|
i = find_first_mismatch(text1, text2) |
|
text1 = list(text1[max(0, i - 2) : i + 5 + 1]) |
|
text2 = list(text2[max(0, i - 2) : i + 5 + 1]) |
|
logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1)) |
|
logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2)) |
|
decode_errors += 1 |
|
logger.error(f" {decode_errors=}") |
|
if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS: |
|
logger.error(f" EXIT: {encode_errors=} {decode_errors=}") |
|
|
|
break |
|
|
|
t_total = time.perf_counter() - t_start |
|
logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}") |
|
|
|
|
|
def main(argv: list[str] | None = None): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file") |
|
parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file") |
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity") |
|
args = parser.parse_args(argv) |
|
|
|
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO) |
|
logger.info(f"VOCABFILE: '{args.vocab_file}'") |
|
|
|
tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer) |
|
tokenizer2 = TokenizerLlamaCpp(args.vocab_file) |
|
|
|
|
|
|
|
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip()) |
|
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe()) |
|
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes()) |
|
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1)) |
|
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer2.model.free() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
if True: |
|
logging.basicConfig( |
|
level = logging.DEBUG, |
|
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s", |
|
datefmt = "%Y-%m-%d %H:%M:%S", |
|
filename = logger.name + ".log", |
|
filemode = "a" |
|
) |
|
logging.basicConfig( |
|
level = logging.DEBUG, |
|
format = "%(levelname)s %(message)s", |
|
) |
|
|
|
path_tokenizers = Path("./models/tokenizers/") |
|
path_vocab_format = "./models/ggml-vocab-%s.gguf" |
|
|
|
tokenizers = [ |
|
"llama-spm", |
|
"phi-3", |
|
"gemma", |
|
"gemma-2", |
|
"baichuan", |
|
"bert-bge", |
|
"jina-v2-en", |
|
"llama-bpe", |
|
"phi-2", |
|
"deepseek-llm", |
|
"deepseek-coder", |
|
"falcon", |
|
"mpt", |
|
"starcoder", |
|
"gpt-2", |
|
"stablelm2", |
|
"refact", |
|
"qwen2", |
|
"olmo", |
|
"jina-v2-es", |
|
"jina-v2-de", |
|
"smaug-bpe", |
|
"poro-chat", |
|
"jina-v2-code", |
|
"viking", |
|
"jais", |
|
] |
|
|
|
logger.info("=" * 50) |
|
for tokenizer in tokenizers: |
|
logger.info("-" * 50) |
|
logger.info(f"TOKENIZER: '{tokenizer}'") |
|
vocab_file = Path(path_vocab_format % tokenizer) |
|
dir_tokenizer = path_tokenizers / tokenizer |
|
main([str(vocab_file), str(dir_tokenizer), "--verbose"]) |
|
|