|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Siglip model. """ |
|
|
|
|
|
|
|
import os |
|
import math |
|
import warnings |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn.init import _calculate_fan_in_and_fan_out |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import ( |
|
logging, |
|
) |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class SiglipVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a |
|
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip |
|
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. |
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
Number of channels in the input images. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
patch_size (`int`, *optional*, defaults to 16): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
Example: |
|
```python |
|
>>> from transformers import SiglipVisionConfig, SiglipVisionModel |
|
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration |
|
>>> configuration = SiglipVisionConfig() |
|
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration |
|
>>> model = SiglipVisionModel(configuration) |
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "siglip_vision_model" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=16, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
|
|
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" |
|
|
|
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"google/siglip-base-patch16-224", |
|
|
|
] |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def _trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2, |
|
) |
|
|
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
if tensor.dtype in [torch.float16, torch.bfloat16]: |
|
|
|
og_dtype = tensor.dtype |
|
tensor = tensor.to(torch.float32) |
|
tensor.erfinv_() |
|
tensor = tensor.to(og_dtype) |
|
else: |
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.0)) |
|
tensor.add_(mean) |
|
|
|
|
|
if tensor.dtype == torch.float16: |
|
|
|
tensor = tensor.to(torch.float32) |
|
tensor.clamp_(min=a, max=b) |
|
tensor = tensor.to(torch.float16) |
|
else: |
|
tensor.clamp_(min=a, max=b) |
|
|
|
|
|
def trunc_normal_tf_( |
|
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 |
|
): |
|
"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \\leq \text{mean} \\leq b`. |
|
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the |
|
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 |
|
and the result is subsquently scaled and shifted by the mean and std args. |
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
""" |
|
with torch.no_grad(): |
|
_trunc_normal_(tensor, 0, 1.0, a, b) |
|
tensor.mul_(std).add_(mean) |
|
|
|
|
|
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): |
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) |
|
denom = fan_in |
|
if mode == "fan_in": |
|
denom = fan_in |
|
elif mode == "fan_out": |
|
denom = fan_out |
|
elif mode == "fan_avg": |
|
denom = (fan_in + fan_out) / 2 |
|
|
|
variance = scale / denom |
|
|
|
if distribution == "truncated_normal": |
|
|
|
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) |
|
elif distribution == "normal": |
|
with torch.no_grad(): |
|
tensor.normal_(std=math.sqrt(variance)) |
|
elif distribution == "uniform": |
|
bound = math.sqrt(3 * variance) |
|
with torch.no_grad(): |
|
tensor.uniform_(-bound, bound) |
|
else: |
|
raise ValueError(f"invalid distribution {distribution}") |
|
|
|
|
|
def lecun_normal_(tensor): |
|
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") |
|
|
|
|
|
def default_flax_embed_init(tensor): |
|
variance_scaling_(tensor, mode="fan_in", distribution="normal") |
|
|
|
class SiglipVisionEmbeddings(nn.Module): |
|
def __init__(self, config: SiglipVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=config.num_channels, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
padding="valid", |
|
) |
|
|
|
self.num_patches_per_side = self.image_size // self.patch_size |
|
self.num_patches = self.num_patches_per_side**2 |
|
self.num_positions = self.num_patches |
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) |
|
|
|
class SiglipAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = config.attention_dropout |
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
|
|
class SiglipMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
|
|
|
|
class SiglipEncoderLayer(nn.Module): |
|
def __init__(self, config: SiglipVisionConfig): |
|
super().__init__() |
|
self.embed_dim = config.hidden_size |
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" |
|
self.self_attn = ( |
|
SiglipAttention(config) |
|
) |
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.mlp = SiglipMLP(config) |
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
class SiglipPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = SiglipVisionConfig |
|
base_model_prefix = "siglip" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
|
|
if isinstance(module, SiglipVisionEmbeddings): |
|
width = self.config.hidden_size |
|
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) |
|
elif isinstance(module, nn.Embedding): |
|
default_flax_embed_init(module.weight) |
|
elif isinstance(module, SiglipAttention): |
|
nn.init.normal_(module.q_proj.weight) |
|
nn.init.normal_(module.k_proj.weight) |
|
nn.init.normal_(module.v_proj.weight) |
|
nn.init.normal_(module.out_proj.weight) |
|
nn.init.zeros_(module.q_proj.bias) |
|
nn.init.zeros_(module.k_proj.bias) |
|
nn.init.zeros_(module.v_proj.bias) |
|
nn.init.zeros_(module.out_proj.bias) |
|
elif isinstance(module, SiglipMLP): |
|
nn.init.normal_(module.fc1.weight) |
|
nn.init.normal_(module.fc2.weight) |
|
nn.init.normal_(module.fc1.bias, std=1e-6) |
|
nn.init.normal_(module.fc2.bias, std=1e-6) |
|
elif isinstance(module, (nn.Linear, nn.Conv2d)): |
|
lecun_normal_(module.weight) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
SIGLIP_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
Parameters: |
|
config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
SIGLIP_VISION_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
|
|
class SiglipEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`SiglipEncoderLayer`]. |
|
Args: |
|
config: SiglipConfig |
|
""" |
|
|
|
def __init__(self, config: SiglipVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
class SiglipVisionTransformer(SiglipPreTrainedModel): |
|
config_class = SiglipVisionConfig |
|
main_input_name = "pixel_values" |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config: SiglipVisionConfig): |
|
super().__init__(config) |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
|
|
self.embeddings = SiglipVisionEmbeddings(config) |
|
self.encoder = SiglipEncoder(config) |
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.embeddings.patch_embedding |
|
|
|
import argparse |
|
import json |
|
import re |
|
|
|
import numpy as np |
|
from gguf import * |
|
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig |
|
|
|
TEXT = "clip.text" |
|
VISION = "clip.vision" |
|
|
|
|
|
def add_key_str(raw_key: str, arch: str) -> str: |
|
return raw_key.format(arch=arch) |
|
|
|
|
|
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool: |
|
if name in ( |
|
"logit_scale", |
|
"text_model.embeddings.position_ids", |
|
"vision_model.embeddings.position_ids", |
|
): |
|
return True |
|
|
|
if has_minicpmv and name in ["visual_projection.weight"]: |
|
return True |
|
|
|
if name.startswith("v") and not has_vision: |
|
return True |
|
|
|
if name.startswith("t") and not has_text: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def get_tensor_name(name: str) -> str: |
|
if "projection" in name: |
|
return name |
|
if "mm_projector" in name: |
|
name = name.replace("model.mm_projector", "mm") |
|
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) |
|
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) |
|
return name |
|
|
|
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") |
|
|
|
|
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a significant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = ( |
|
list(range(ord("!"), ord("~") + 1)) |
|
+ list(range(ord("¡"), ord("¬") + 1)) |
|
+ list(range(ord("®"), ord("ÿ") + 1)) |
|
) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8 + n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
ap = argparse.ArgumentParser() |
|
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) |
|
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") |
|
ap.add_argument("--text-only", action="store_true", required=False, |
|
help="Save a text-only model. It can't be used to encode images") |
|
ap.add_argument("--vision-only", action="store_true", required=False, |
|
help="Save a vision-only model. It can't be used to encode texts") |
|
ap.add_argument("--clip-model-is-vision", action="store_true", required=False, |
|
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") |
|
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, |
|
help="The clip model is from openclip (for ViT-SO400M type))") |
|
ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.") |
|
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") |
|
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) |
|
|
|
|
|
default_image_mean = [0.48145466, 0.4578275, 0.40821073] |
|
default_image_std = [0.26862954, 0.26130258, 0.27577711] |
|
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) |
|
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) |
|
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3', default=2) |
|
|
|
|
|
args = ap.parse_args() |
|
|
|
|
|
if args.text_only and args.vision_only: |
|
print("--text-only and --image-only arguments cannot be specified at the same time.") |
|
exit(1) |
|
|
|
if args.use_f32: |
|
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") |
|
|
|
|
|
dir_model = args.model_dir |
|
|
|
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: |
|
vocab = None |
|
tokens = None |
|
else: |
|
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: |
|
vocab = json.load(f) |
|
tokens = [key for key in vocab] |
|
|
|
|
|
|
|
|
|
|
|
|
|
ftype_str = ["f32", "f16"] |
|
|
|
ftype = 1 |
|
if args.use_f32: |
|
ftype = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
minicpmv_version = args.minicpmv_version |
|
emb_dim = 4096 |
|
if minicpmv_version == 1: |
|
emb_dim = 2304 |
|
elif minicpmv_version == 2: |
|
emb_dim = 4096 |
|
elif minicpmv_version == 3: |
|
emb_dim = 3584 |
|
|
|
default_vision_config = { |
|
"hidden_size": 1152, |
|
"image_size": 980, |
|
"intermediate_size": 4304, |
|
"model_type": "idefics2", |
|
"num_attention_heads": 16, |
|
"num_hidden_layers": 27, |
|
"patch_size": 14, |
|
} |
|
|
|
vision_config = Idefics2VisionConfig(**default_vision_config) |
|
model = Idefics2VisionTransformer(vision_config) |
|
if minicpmv_version == 3: |
|
vision_config = SiglipVisionConfig(**default_vision_config) |
|
model = SiglipVisionTransformer(vision_config) |
|
|
|
processor = None |
|
|
|
|
|
|
|
|
|
model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip"))) |
|
|
|
fname_middle = None |
|
has_text_encoder = True |
|
has_vision_encoder = True |
|
has_minicpmv_projector = False |
|
|
|
if args.text_only: |
|
fname_middle = "text-" |
|
has_vision_encoder = False |
|
elif args.minicpmv_projector is not None: |
|
fname_middle = "mmproj-" |
|
has_text_encoder = False |
|
has_minicpmv_projector = True |
|
minicpmv_version = 3 |
|
elif args.vision_only: |
|
fname_middle = "vision-" |
|
has_text_encoder = False |
|
else: |
|
fname_middle = "" |
|
|
|
output_dir = args.output_dir if args.output_dir is not None else dir_model |
|
os.makedirs(output_dir, exist_ok=True) |
|
output_prefix = os.path.basename(output_dir).replace("ggml_", "") |
|
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") |
|
fout = GGUFWriter(path=fname_out, arch="clip") |
|
|
|
fout.add_bool("clip.has_text_encoder", has_text_encoder) |
|
fout.add_bool("clip.has_vision_encoder", has_vision_encoder) |
|
fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector) |
|
fout.add_file_type(ftype) |
|
if args.text_only: |
|
fout.add_description("text-only CLIP model") |
|
elif args.vision_only and not has_minicpmv_projector: |
|
fout.add_description("vision-only CLIP model") |
|
elif has_minicpmv_projector: |
|
fout.add_description("image encoder for MiniCPM-V") |
|
|
|
fout.add_string("clip.projector_type", "resampler") |
|
fout.add_int32("clip.minicpmv_version", minicpmv_version) |
|
else: |
|
fout.add_description("two-tower CLIP model") |
|
|
|
if has_vision_encoder: |
|
|
|
fout.add_uint32("clip.vision.image_size", 448) |
|
fout.add_uint32("clip.vision.patch_size", 14) |
|
fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152) |
|
fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304) |
|
fout.add_uint32("clip.vision.projection_dim", 0) |
|
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16) |
|
fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) |
|
block_count = 26 |
|
fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count) |
|
|
|
if processor is not None: |
|
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean |
|
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std |
|
else: |
|
image_mean = args.image_mean if args.image_mean is not None else default_image_mean |
|
image_std = args.image_std if args.image_std is not None else default_image_std |
|
fout.add_array("clip.vision.image_mean", image_mean) |
|
fout.add_array("clip.vision.image_std", image_std) |
|
|
|
use_gelu = True |
|
fout.add_bool("clip.use_gelu", use_gelu) |
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000 ** omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
if isinstance(grid_size, int): |
|
grid_h_size, grid_w_size = grid_size, grid_size |
|
else: |
|
grid_h_size, grid_w_size = grid_size[0], grid_size[1] |
|
|
|
grid_h = np.arange(grid_h_size, dtype=np.float32) |
|
grid_w = np.arange(grid_w_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_h_size, grid_w_size]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
def _replace_name_resampler(s, v): |
|
if re.match("resampler.pos_embed", s): |
|
return { |
|
s: v, |
|
re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), |
|
} |
|
if re.match("resampler.proj", s): |
|
return { |
|
re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), |
|
re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(), |
|
} |
|
if re.match("resampler.attn.in_proj_.*", s): |
|
return { |
|
re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0], |
|
re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1], |
|
re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2], |
|
} |
|
return {s: v} |
|
|
|
if has_minicpmv_projector: |
|
projector = torch.load(args.minicpmv_projector) |
|
new_state_dict = {} |
|
for k, v in projector.items(): |
|
kvs = _replace_name_resampler(k, v) |
|
for nk, nv in kvs.items(): |
|
new_state_dict[nk] = nv |
|
projector = new_state_dict |
|
ftype_cur = 0 |
|
for name, data in projector.items(): |
|
name = get_tensor_name(name) |
|
data = data.squeeze().numpy() |
|
|
|
n_dims = len(data.shape) |
|
if ftype == 1: |
|
if name[-7:] == ".weight" and n_dims == 2: |
|
print(" Converting to float16") |
|
data = data.astype(np.float16) |
|
ftype_cur = 1 |
|
else: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
else: |
|
if data.dtype != np.float32: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
|
|
fout.add_tensor(name, data) |
|
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") |
|
|
|
print("Projector tensors added\n") |
|
|
|
def _replace_name(s, v): |
|
s = "vision_model." + s |
|
if re.match("vision_model.embeddings.position_embedding", s): |
|
v = v.unsqueeze(0) |
|
return {s: v} |
|
|
|
return {s: v} |
|
|
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
kvs = _replace_name(k, v) |
|
for nk, nv in kvs.items(): |
|
new_state_dict[nk] = nv |
|
state_dict = new_state_dict |
|
for name, data in state_dict.items(): |
|
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector): |
|
|
|
print(f"skipping parameter: {name}") |
|
continue |
|
|
|
name = get_tensor_name(name) |
|
data = data.squeeze().numpy() |
|
|
|
n_dims = len(data.shape) |
|
|
|
|
|
ftype_cur = 0 |
|
if n_dims == 4: |
|
print(f"tensor {name} is always saved in f16") |
|
data = data.astype(np.float16) |
|
ftype_cur = 1 |
|
elif ftype == 1: |
|
if name[-7:] == ".weight" and n_dims == 2: |
|
print(" Converting to float16") |
|
data = data.astype(np.float16) |
|
ftype_cur = 1 |
|
else: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
else: |
|
if data.dtype != np.float32: |
|
print(" Converting to float32") |
|
data = data.astype(np.float32) |
|
ftype_cur = 0 |
|
|
|
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") |
|
fout.add_tensor(name, data) |
|
|
|
|
|
fout.write_header_to_file() |
|
fout.write_kv_data_to_file() |
|
fout.write_tensors_to_file() |
|
fout.close() |
|
|
|
print("Done. Output file: " + fname_out) |
|
|