|
|
|
from __future__ import annotations |
|
|
|
import logging |
|
import argparse |
|
import os |
|
import re |
|
import sys |
|
from pathlib import Path |
|
from typing import Any |
|
|
|
import numpy as np |
|
|
|
|
|
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): |
|
sys.path.insert(0, str(Path(__file__).parent.parent)) |
|
|
|
from gguf import GGUFReader, GGUFValueType, ReaderTensor |
|
|
|
logger = logging.getLogger("gguf-dump") |
|
|
|
|
|
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]: |
|
host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG' |
|
if reader.byte_order == 'S': |
|
file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE' |
|
else: |
|
file_endian = host_endian |
|
return (host_endian, file_endian) |
|
|
|
|
|
|
|
|
|
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: |
|
host_endian, file_endian = get_file_host_endian(reader) |
|
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') |
|
print(f'* Dumping {len(reader.fields)} key/value pair(s)') |
|
for n, field in enumerate(reader.fields.values(), 1): |
|
if not field.types: |
|
pretty_type = 'N/A' |
|
elif field.types[0] == GGUFValueType.ARRAY: |
|
nest_count = len(field.types) - 1 |
|
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count |
|
else: |
|
pretty_type = str(field.types[-1].name) |
|
|
|
log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}' |
|
if len(field.types) == 1: |
|
curr_type = field.types[0] |
|
if curr_type == GGUFValueType.STRING: |
|
log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60])) |
|
elif field.types[0] in reader.gguf_scalar_to_np: |
|
log_message += ' = {0}'.format(field.parts[-1][0]) |
|
print(log_message) |
|
if args.no_tensors: |
|
return |
|
print(f'* Dumping {len(reader.tensors)} tensor(s)') |
|
for n, tensor in enumerate(reader.tensors, 1): |
|
prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape))) |
|
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') |
|
|
|
|
|
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None: |
|
import json |
|
host_endian, file_endian = get_file_host_endian(reader) |
|
metadata: dict[str, Any] = {} |
|
tensors: dict[str, Any] = {} |
|
result = { |
|
"filename": args.model, |
|
"endian": file_endian, |
|
"metadata": metadata, |
|
"tensors": tensors, |
|
} |
|
for idx, field in enumerate(reader.fields.values()): |
|
curr: dict[str, Any] = { |
|
"index": idx, |
|
"type": field.types[0].name if field.types else 'UNKNOWN', |
|
"offset": field.offset, |
|
} |
|
metadata[field.name] = curr |
|
if field.types[:1] == [GGUFValueType.ARRAY]: |
|
curr["array_types"] = [t.name for t in field.types][1:] |
|
if not args.json_array: |
|
continue |
|
itype = field.types[-1] |
|
if itype == GGUFValueType.STRING: |
|
curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data] |
|
else: |
|
curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()] |
|
elif field.types[0] == GGUFValueType.STRING: |
|
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8") |
|
else: |
|
curr["value"] = field.parts[-1].tolist()[0] |
|
if not args.no_tensors: |
|
for idx, tensor in enumerate(reader.tensors): |
|
tensors[tensor.name] = { |
|
"index": idx, |
|
"shape": tensor.shape.tolist(), |
|
"type": tensor.tensor_type.name, |
|
"offset": tensor.field.offset, |
|
} |
|
json.dump(result, sys.stdout) |
|
|
|
|
|
def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]): |
|
|
|
|
|
|
|
def strAlign(padding: int, alignMode: str | None, strVal: str): |
|
if alignMode == 'center': |
|
return strVal.center(padding) |
|
elif alignMode == 'right': |
|
return strVal.rjust(padding - 1) + ' ' |
|
elif alignMode == 'left': |
|
return ' ' + strVal.ljust(padding - 1) |
|
else: |
|
return ' ' + strVal.ljust(padding - 1) |
|
|
|
def dashAlign(padding: int, alignMode: str | None): |
|
if alignMode == 'center': |
|
return ':' + '-' * (padding - 2) + ':' |
|
elif alignMode == 'right': |
|
return '-' * (padding - 1) + ':' |
|
elif alignMode == 'left': |
|
return ':' + '-' * (padding - 1) |
|
else: |
|
return '-' * (padding) |
|
|
|
|
|
rowsPadding = {} |
|
for index, columnEntry in enumerate(header_map): |
|
padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2 |
|
headerPadCount = len(columnEntry['header_name']) + 2 |
|
rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount |
|
|
|
|
|
rows = [] |
|
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map))) |
|
rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map))) |
|
|
|
|
|
for item in data: |
|
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map))) |
|
|
|
|
|
tableString = "" |
|
for row in rows: |
|
tableString += f'|{row}|\n' |
|
|
|
return tableString |
|
|
|
|
|
def element_count_rounded_notation(count: int) -> str: |
|
if count > 1e15 : |
|
|
|
scaled_amount = count * 1e-15 |
|
scale_suffix = "Q" |
|
elif count > 1e12 : |
|
|
|
scaled_amount = count * 1e-12 |
|
scale_suffix = "T" |
|
elif count > 1e9 : |
|
|
|
scaled_amount = count * 1e-9 |
|
scale_suffix = "B" |
|
elif count > 1e6 : |
|
|
|
scaled_amount = count * 1e-6 |
|
scale_suffix = "M" |
|
elif count > 1e3 : |
|
|
|
scaled_amount = count * 1e-3 |
|
scale_suffix = "K" |
|
else: |
|
|
|
scaled_amount = count |
|
scale_suffix = "" |
|
return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}" |
|
|
|
|
|
def translate_tensor_name(name): |
|
words = name.split(".") |
|
|
|
|
|
abbreviation_dictionary = { |
|
'token_embd': 'Token embedding', |
|
'pos_embd': 'Position embedding', |
|
'output_norm': 'Output normalization', |
|
'output': 'Output', |
|
'attn_norm': 'Attention normalization', |
|
'attn_norm_2': 'Attention normalization', |
|
'attn_qkv': 'Attention query-key-value', |
|
'attn_q': 'Attention query', |
|
'attn_k': 'Attention key', |
|
'attn_v': 'Attention value', |
|
'attn_output': 'Attention output', |
|
'ffn_norm': 'Feed-forward network normalization', |
|
'ffn_up': 'Feed-forward network "up"', |
|
'ffn_gate': 'Feed-forward network "gate"', |
|
'ffn_down': 'Feed-forward network "down"', |
|
'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models', |
|
'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models', |
|
'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models', |
|
'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models', |
|
'ssm_in': 'State space model input projections', |
|
'ssm_conv1d': 'State space model rolling/shift', |
|
'ssm_x': 'State space model selective parametrization', |
|
'ssm_a': 'State space model state compression', |
|
'ssm_d': 'State space model skip connection', |
|
'ssm_dt': 'State space model time step', |
|
'ssm_out': 'State space model output projection', |
|
'blk': 'Block', |
|
'enc': 'Encoder', |
|
'dec': 'Decoder', |
|
} |
|
|
|
expanded_words = [] |
|
for word in words: |
|
word_norm = word.strip().lower() |
|
if word_norm in abbreviation_dictionary: |
|
expanded_words.append(abbreviation_dictionary[word_norm].title()) |
|
else: |
|
expanded_words.append(word.title()) |
|
|
|
return ' '.join(expanded_words) |
|
|
|
|
|
def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None: |
|
host_endian, file_endian = get_file_host_endian(reader) |
|
markdown_content = "" |
|
markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n' |
|
markdown_content += f'- Endian: {file_endian} endian\n' |
|
markdown_content += '\n' |
|
markdown_content += '## Key Value Metadata Store\n\n' |
|
markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n' |
|
markdown_content += '\n' |
|
|
|
kv_dump_table: list[dict[str, str | int]] = [] |
|
for n, field in enumerate(reader.fields.values(), 1): |
|
if not field.types: |
|
pretty_type = 'N/A' |
|
elif field.types[0] == GGUFValueType.ARRAY: |
|
nest_count = len(field.types) - 1 |
|
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count |
|
else: |
|
pretty_type = str(field.types[-1].name) |
|
|
|
def escape_markdown_inline_code(value_string): |
|
|
|
|
|
max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0) |
|
inline_code_marker = '`' * (max_backticks + 1) |
|
|
|
|
|
if value_string.startswith('`') or value_string.endswith('`'): |
|
value_string = f" {value_string} " |
|
|
|
return f"{inline_code_marker}{value_string}{inline_code_marker}" |
|
|
|
total_elements = len(field.data) |
|
value = "" |
|
if len(field.types) == 1: |
|
curr_type = field.types[0] |
|
if curr_type == GGUFValueType.STRING: |
|
truncate_length = 60 |
|
value_string = str(bytes(field.parts[-1]), encoding='utf-8') |
|
if len(value_string) > truncate_length: |
|
head = escape_markdown_inline_code(value_string[:truncate_length // 2]) |
|
tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) |
|
value = "{head}...{tail}".format(head=head, tail=tail) |
|
else: |
|
value = escape_markdown_inline_code(value_string) |
|
elif curr_type in reader.gguf_scalar_to_np: |
|
value = str(field.parts[-1][0]) |
|
else: |
|
if field.types[0] == GGUFValueType.ARRAY: |
|
curr_type = field.types[1] |
|
array_elements = [] |
|
|
|
if curr_type == GGUFValueType.STRING: |
|
render_element = min(5, total_elements) |
|
for element_pos in range(render_element): |
|
truncate_length = 30 |
|
value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8') |
|
if len(value_string) > truncate_length: |
|
head = escape_markdown_inline_code(value_string[:truncate_length // 2]) |
|
tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) |
|
value = "{head}...{tail}".format(head=head, tail=tail) |
|
else: |
|
value = escape_markdown_inline_code(value_string) |
|
array_elements.append(value) |
|
|
|
elif curr_type in reader.gguf_scalar_to_np: |
|
render_element = min(7, total_elements) |
|
for element_pos in range(render_element): |
|
array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0])) |
|
|
|
value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]' |
|
|
|
kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value}) |
|
|
|
kv_dump_table_header_map = [ |
|
{'key_name':'n', 'header_name':'POS', 'align':'right'}, |
|
{'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'}, |
|
{'key_name':'total_elements', 'header_name':'Count', 'align':'right'}, |
|
{'key_name':'field_name', 'header_name':'Key', 'align':'left'}, |
|
{'key_name':'value', 'header_name':'Value', 'align':'left'}, |
|
] |
|
|
|
markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table) |
|
|
|
markdown_content += "\n" |
|
|
|
if not args.no_tensors: |
|
|
|
tensor_prefix_order: list[str] = [] |
|
tensor_name_to_key: dict[str, int] = {} |
|
tensor_groups: dict[str, list[ReaderTensor]] = {} |
|
total_elements = sum(tensor.n_elements for tensor in reader.tensors) |
|
|
|
|
|
for key, tensor in enumerate(reader.tensors): |
|
tensor_components = tensor.name.split('.') |
|
|
|
|
|
tensor_group_name = "base" |
|
if tensor_components[0] == 'blk': |
|
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}" |
|
elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk': |
|
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}" |
|
elif tensor_components[0] in ['enc', 'dec']: |
|
tensor_group_name = f"{tensor_components[0]}" |
|
|
|
|
|
if tensor_group_name not in tensor_groups: |
|
tensor_groups[tensor_group_name] = [] |
|
tensor_prefix_order.append(tensor_group_name) |
|
|
|
|
|
tensor_groups[tensor_group_name].append(tensor) |
|
tensor_name_to_key[tensor.name] = key |
|
|
|
|
|
markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n' |
|
markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n' |
|
markdown_content += '\n' |
|
|
|
for group in tensor_prefix_order: |
|
tensors = tensor_groups[group] |
|
group_elements = sum(tensor.n_elements for tensor in tensors) |
|
markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n" |
|
|
|
markdown_content += "\n" |
|
|
|
markdown_content += "### Tensor Data Offset\n" |
|
markdown_content += '\n' |
|
markdown_content += 'This table contains the offset and data segment relative to start of file\n' |
|
markdown_content += '\n' |
|
|
|
tensor_mapping_table: list[dict[str, str | int]] = [] |
|
for key, tensor in enumerate(reader.tensors): |
|
data_offset_pretty = '{0:#16x}'.format(tensor.data_offset) |
|
data_size_pretty = '{0:#16x}'.format(tensor.n_bytes) |
|
tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty}) |
|
|
|
tensors_mapping_table_header_map = [ |
|
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, |
|
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, |
|
{'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'}, |
|
{'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'}, |
|
] |
|
|
|
markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table) |
|
markdown_content += "\n" |
|
|
|
for group in tensor_prefix_order: |
|
tensors = tensor_groups[group] |
|
group_elements = sum(tensor.n_elements for tensor in tensors) |
|
group_percentage = group_elements / total_elements * 100 |
|
markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n" |
|
|
|
|
|
prettify_element_est_count_size: int = 1 |
|
prettify_element_count_size: int = 1 |
|
prettify_dimension_max_widths: dict[int, int] = {} |
|
for tensor in tensors: |
|
prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements)))) |
|
prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements))) |
|
for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))): |
|
prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size))) |
|
|
|
|
|
tensor_dump_table: list[dict[str, str | int]] = [] |
|
for tensor in tensors: |
|
human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)")) |
|
pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape)))) |
|
element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})" |
|
element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}" |
|
type_name_string = f"{tensor.tensor_type.name}" |
|
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string}) |
|
|
|
tensor_dump_table_header_map = [ |
|
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, |
|
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, |
|
{'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'}, |
|
{'key_name':'element_count', 'header_name':'Elements', 'align':'left'}, |
|
{'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'}, |
|
{'key_name':'tensor_type', 'header_name':'Type', 'align':'left'}, |
|
] |
|
|
|
markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table) |
|
|
|
markdown_content += "\n" |
|
markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n" |
|
markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n" |
|
markdown_content += "\n\n" |
|
|
|
print(markdown_content) |
|
|
|
|
|
def main() -> None: |
|
parser = argparse.ArgumentParser(description="Dump GGUF file metadata") |
|
parser.add_argument("model", type=str, help="GGUF format model filename") |
|
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata") |
|
parser.add_argument("--json", action="store_true", help="Produce JSON output") |
|
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)") |
|
parser.add_argument("--data-offset", action="store_true", help="Start of data offset") |
|
parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field") |
|
parser.add_argument("--markdown", action="store_true", help="Produce markdown output") |
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity") |
|
|
|
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"]) |
|
|
|
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) |
|
|
|
if not args.json and not args.markdown and not args.data_offset and not args.data_alignment: |
|
logger.info(f'* Loading: {args.model}') |
|
|
|
reader = GGUFReader(args.model, 'r') |
|
|
|
if args.json: |
|
dump_metadata_json(reader, args) |
|
elif args.markdown: |
|
dump_markdown_metadata(reader, args) |
|
elif args.data_offset: |
|
print(reader.data_offset) |
|
elif args.data_alignment: |
|
print(reader.alignment) |
|
else: |
|
dump_metadata(reader, args) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|