|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import pathlib |
|
import re |
|
|
|
import requests |
|
import sys |
|
import json |
|
import shutil |
|
|
|
from hashlib import sha256 |
|
from enum import IntEnum, auto |
|
from transformers import AutoTokenizer |
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger("convert_hf_to_gguf_update") |
|
sess = requests.Session() |
|
|
|
|
|
class TOKENIZER_TYPE(IntEnum): |
|
SPM = auto() |
|
BPE = auto() |
|
WPM = auto() |
|
UGM = auto() |
|
|
|
|
|
|
|
|
|
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' |
|
|
|
if len(sys.argv) == 2: |
|
token = sys.argv[1] |
|
if not token.startswith("hf_"): |
|
logger.info("Huggingface token seems invalid") |
|
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>") |
|
sys.exit(1) |
|
else: |
|
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>") |
|
sys.exit(1) |
|
|
|
|
|
models = [ |
|
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, |
|
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", }, |
|
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", }, |
|
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", }, |
|
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, |
|
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, |
|
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, |
|
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", }, |
|
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, |
|
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, |
|
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, |
|
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", }, |
|
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", }, |
|
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", }, |
|
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, |
|
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", }, |
|
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", }, |
|
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", }, |
|
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, |
|
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, |
|
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, |
|
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", }, |
|
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", }, |
|
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", }, |
|
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, |
|
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", }, |
|
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", }, |
|
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", }, |
|
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", }, |
|
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", }, |
|
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", }, |
|
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", }, |
|
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", }, |
|
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", }, |
|
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", }, |
|
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", }, |
|
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", }, |
|
] |
|
|
|
|
|
def download_file_with_auth(url, token, save_path): |
|
headers = {"Authorization": f"Bearer {token}"} |
|
response = sess.get(url, headers=headers) |
|
response.raise_for_status() |
|
os.makedirs(os.path.dirname(save_path), exist_ok=True) |
|
with open(save_path, 'wb') as downloaded_file: |
|
downloaded_file.write(response.content) |
|
logger.info(f"File {save_path} downloaded successfully") |
|
|
|
|
|
def download_model(model): |
|
name = model["name"] |
|
repo = model["repo"] |
|
tokt = model["tokt"] |
|
|
|
os.makedirs(f"models/tokenizers/{name}", exist_ok=True) |
|
|
|
files = ["config.json", "tokenizer.json", "tokenizer_config.json"] |
|
|
|
if tokt == TOKENIZER_TYPE.SPM: |
|
files.append("tokenizer.model") |
|
|
|
if tokt == TOKENIZER_TYPE.UGM: |
|
files.append("spiece.model") |
|
|
|
if os.path.isdir(repo): |
|
|
|
for file in files: |
|
src_path = os.path.join(repo, file) |
|
dst_path = f"models/tokenizers/{name}/{file}" |
|
if os.path.isfile(dst_path): |
|
logger.info(f"{name}: File {dst_path} already exists - skipping") |
|
continue |
|
if os.path.isfile(src_path): |
|
shutil.copy2(src_path, dst_path) |
|
logger.info(f"{name}: Copied {src_path} to {dst_path}") |
|
else: |
|
logger.warning(f"{name}: Source file {src_path} does not exist") |
|
else: |
|
|
|
for file in files: |
|
save_path = f"models/tokenizers/{name}/{file}" |
|
if os.path.isfile(save_path): |
|
logger.info(f"{name}: File {save_path} already exists - skipping") |
|
continue |
|
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path) |
|
|
|
|
|
for model in models: |
|
try: |
|
download_model(model) |
|
except Exception as e: |
|
logger.error(f"Failed to download model {model['name']}. Error: {e}") |
|
|
|
|
|
|
|
|
|
src_ifs = "" |
|
for model in models: |
|
name = model["name"] |
|
tokt = model["tokt"] |
|
|
|
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM: |
|
continue |
|
|
|
|
|
if not os.path.exists(f"models/tokenizers/{name}"): |
|
logger.warning(f"Directory for tokenizer {name} not found. Skipping...") |
|
continue |
|
|
|
|
|
try: |
|
if name == "t5": |
|
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") |
|
except OSError as e: |
|
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}") |
|
continue |
|
|
|
chktok = tokenizer.encode(CHK_TXT) |
|
chkhsh = sha256(str(chktok).encode()).hexdigest() |
|
|
|
logger.info(f"model: {name}") |
|
logger.info(f"tokt: {tokt}") |
|
logger.info(f"repo: {model['repo']}") |
|
logger.info(f"chktok: {chktok}") |
|
logger.info(f"chkhsh: {chkhsh}") |
|
|
|
|
|
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f: |
|
cfg = json.load(f) |
|
normalizer = cfg["normalizer"] |
|
logger.info("normalizer: " + json.dumps(normalizer, indent=4)) |
|
pre_tokenizer = cfg["pre_tokenizer"] |
|
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) |
|
if "ignore_merges" in cfg["model"]: |
|
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)) |
|
|
|
logger.info("") |
|
|
|
src_ifs += f" if chkhsh == \"{chkhsh}\":\n" |
|
src_ifs += f" # ref: {model['repo']}\n" |
|
src_ifs += f" res = \"{name}\"\n" |
|
|
|
src_func = f""" |
|
def get_vocab_base_pre(self, tokenizer) -> str: |
|
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that |
|
# is specific for the BPE pre-tokenizer used by the model |
|
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can |
|
# use in llama.cpp to implement the same pre-tokenizer |
|
|
|
chktxt = {repr(CHK_TXT)} |
|
|
|
chktok = tokenizer.encode(chktxt) |
|
chkhsh = sha256(str(chktok).encode()).hexdigest() |
|
|
|
logger.debug(f"chktok: {{chktok}}") |
|
logger.debug(f"chkhsh: {{chkhsh}}") |
|
|
|
res = None |
|
|
|
# NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script |
|
# or pull the latest version of the model from Huggingface |
|
# don't edit the hashes manually! |
|
{src_ifs} |
|
if res is None: |
|
logger.warning("\\n") |
|
logger.warning("**************************************************************************************") |
|
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") |
|
logger.warning("** There are 2 possible reasons for this:") |
|
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet") |
|
logger.warning("** - the pre-tokenization config has changed upstream") |
|
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.") |
|
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") |
|
logger.warning("**") |
|
logger.warning(f"** chkhsh: {{chkhsh}}") |
|
logger.warning("**************************************************************************************") |
|
logger.warning("\\n") |
|
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") |
|
|
|
logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}") |
|
logger.debug(f"chkhsh: {{chkhsh}}") |
|
|
|
return res |
|
""" |
|
|
|
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py") |
|
convert_py = convert_py_pth.read_text(encoding="utf-8") |
|
convert_py = re.sub( |
|
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)", |
|
lambda m: m.group(1) + src_func + m.group(3), |
|
convert_py, |
|
flags=re.DOTALL | re.MULTILINE, |
|
) |
|
|
|
convert_py_pth.write_text(convert_py, encoding="utf-8") |
|
|
|
logger.info("+++ convert_hf_to_gguf.py was updated") |
|
|
|
|
|
|
|
tests = [ |
|
"ied 4 ½ months", |
|
"Führer", |
|
"", |
|
" ", |
|
" ", |
|
" ", |
|
"\t", |
|
"\n", |
|
"\n\n", |
|
"\n\n\n", |
|
"\t\n", |
|
"Hello world", |
|
" Hello world", |
|
"Hello World", |
|
" Hello World", |
|
" Hello World!", |
|
"Hello, world!", |
|
" Hello, world!", |
|
" this is 🦙.cpp", |
|
"w048 7tuijk dsdfhu", |
|
"нещо на Български", |
|
"កាន់តែពិសេសអាចខលចេញ", |
|
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", |
|
"Hello", |
|
" Hello", |
|
" Hello", |
|
" Hello", |
|
" Hello", |
|
" Hello\n Hello", |
|
" (", |
|
"\n =", |
|
"' era", |
|
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", |
|
"!!!!!!", |
|
"3", |
|
"33", |
|
"333", |
|
"3333", |
|
"33333", |
|
"333333", |
|
"3333333", |
|
"33333333", |
|
"333333333", |
|
"Cửa Việt", |
|
" discards", |
|
CHK_TXT, |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for model in models: |
|
name = model["name"] |
|
tokt = model["tokt"] |
|
|
|
|
|
if not os.path.exists(f"models/tokenizers/{name}"): |
|
logger.warning(f"Directory for tokenizer {name} not found. Skipping...") |
|
continue |
|
|
|
|
|
try: |
|
if name == "t5": |
|
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") |
|
except OSError as e: |
|
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}") |
|
continue |
|
|
|
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f: |
|
for text in tests: |
|
f.write(f"{text}") |
|
f.write("\n__ggml_vocab_test__\n") |
|
|
|
with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f: |
|
for text in tests: |
|
res = tokenizer.encode(text, add_special_tokens=False) |
|
for r in res: |
|
f.write(f" {r}") |
|
f.write("\n") |
|
|
|
logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*") |
|
|
|
|
|
|
|
logger.info("\nRun the following commands to generate the vocab files for testing:\n") |
|
|
|
for model in models: |
|
name = model["name"] |
|
|
|
print(f"python3 convert_hf_to_gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") |
|
|
|
logger.info("\n") |
|
|