|
#include "speculative.h" |
|
|
|
#include "log.h" |
|
#include "common.h" |
|
#include "sampling.h" |
|
|
|
#include <cstring> |
|
|
|
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128 |
|
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5 |
|
|
|
struct common_speculative { |
|
struct llama_context * ctx; |
|
struct common_sampler * smpl; |
|
|
|
llama_batch batch; |
|
llama_tokens prompt; |
|
}; |
|
|
|
struct common_speculative * common_speculative_init( |
|
struct llama_context * ctx_dft) { |
|
auto * result = new common_speculative { |
|
ctx_dft, |
|
nullptr, |
|
llama_batch_init(llama_n_batch(ctx_dft), 0, 1), |
|
{}, |
|
}; |
|
|
|
|
|
#if 0 |
|
{ |
|
common_params_sampling params; |
|
params.no_perf = false; |
|
|
|
params.top_k = 40; |
|
params.top_p = 0.9; |
|
|
|
params.samplers = { |
|
COMMON_SAMPLER_TYPE_TOP_K, |
|
COMMON_SAMPLER_TYPE_TOP_P, |
|
COMMON_SAMPLER_TYPE_INFILL, |
|
}; |
|
|
|
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params); |
|
} |
|
#else |
|
{ |
|
common_params_sampling params; |
|
params.no_perf = false; |
|
|
|
params.top_k = 10; |
|
|
|
params.samplers = { |
|
COMMON_SAMPLER_TYPE_TOP_K, |
|
}; |
|
|
|
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params); |
|
} |
|
#endif |
|
|
|
return result; |
|
} |
|
|
|
void common_speculative_free(struct common_speculative * spec) { |
|
common_sampler_free(spec->smpl); |
|
|
|
llama_batch_free(spec->batch); |
|
|
|
delete spec; |
|
} |
|
|
|
bool common_speculative_are_compatible( |
|
const struct llama_context * ctx_tgt, |
|
const struct llama_context * ctx_dft) { |
|
const struct llama_model * model_tgt = llama_get_model(ctx_tgt); |
|
const struct llama_model * model_dft = llama_get_model(ctx_dft); |
|
|
|
const bool vocab_type_tgt = llama_vocab_type(model_tgt); |
|
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt); |
|
|
|
const bool vocab_type_dft = llama_vocab_type(model_dft); |
|
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft); |
|
|
|
if (vocab_type_tgt != vocab_type_dft) { |
|
LOG_ERR("%s: draft model vocab type must match target model to use speculation but " |
|
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt); |
|
return false; |
|
} |
|
|
|
if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) || |
|
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) || |
|
llama_token_bos(model_tgt) != llama_token_bos(model_dft) || |
|
llama_token_eos(model_tgt) != llama_token_eos(model_dft)) { |
|
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__); |
|
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_tgt), llama_add_bos_token(model_tgt), llama_token_eos(model_tgt), llama_add_eos_token(model_tgt)); |
|
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_dft), llama_add_bos_token(model_dft), llama_token_eos(model_dft), llama_add_eos_token(model_dft)); |
|
return false; |
|
} |
|
|
|
{ |
|
const int n_vocab_tgt = llama_n_vocab(model_tgt); |
|
const int n_vocab_dft = llama_n_vocab(model_dft); |
|
|
|
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft); |
|
|
|
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) { |
|
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but " |
|
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n", |
|
__func__, n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE); |
|
return false; |
|
} |
|
|
|
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) { |
|
const char * token_text_tgt = llama_token_get_text(model_tgt, i); |
|
const char * token_text_dft = llama_token_get_text(model_dft, i); |
|
if (std::strcmp(token_text_tgt, token_text_dft) != 0) { |
|
LOG_ERR("%s: draft model vocab must match target model to use speculation but " |
|
"token %d content differs - target '%s', draft '%s'\n", __func__, i, |
|
common_token_to_piece(ctx_tgt, i).c_str(), |
|
common_token_to_piece(ctx_dft, i).c_str()); |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
llama_tokens common_speculative_gen_draft( |
|
struct common_speculative * spec, |
|
struct common_speculative_params params, |
|
const llama_tokens & prompt_tgt, |
|
llama_token id_last) { |
|
auto & batch = spec->batch; |
|
auto & ctx = spec->ctx; |
|
auto & smpl = spec->smpl; |
|
auto & prompt = spec->prompt; |
|
|
|
int reuse_i = 0; |
|
int reuse_n = 0; |
|
|
|
const int n_ctx = llama_n_ctx(ctx) - params.n_draft; |
|
|
|
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx); |
|
|
|
|
|
|
|
for (int i = 0; i < (int) prompt.size(); ++i) { |
|
int cur = 0; |
|
while (i_start + cur < (int) prompt_tgt.size() && |
|
i + cur < (int) prompt.size() && |
|
prompt_tgt[i_start + cur] == prompt[i + cur]) { |
|
cur++; |
|
} |
|
|
|
if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) { |
|
reuse_i = i; |
|
reuse_n = cur; |
|
} |
|
} |
|
|
|
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size()); |
|
|
|
llama_tokens result; |
|
result.reserve(params.n_draft); |
|
|
|
if (reuse_n == 0) { |
|
llama_kv_cache_clear(ctx); |
|
|
|
prompt.clear(); |
|
} else { |
|
|
|
|
|
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) { |
|
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) { |
|
result.push_back(prompt[i]); |
|
|
|
if (params.n_draft <= (int) result.size()) { |
|
break; |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
if (reuse_i > 0) { |
|
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i); |
|
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i); |
|
|
|
prompt.erase(prompt.begin(), prompt.begin() + reuse_i); |
|
} |
|
|
|
if (reuse_n < (int) prompt.size()) { |
|
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1); |
|
|
|
prompt.erase(prompt.begin() + reuse_n, prompt.end()); |
|
} |
|
} |
|
|
|
|
|
common_batch_clear(batch); |
|
|
|
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) { |
|
|
|
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false); |
|
|
|
prompt.push_back(prompt_tgt[i]); |
|
} |
|
|
|
|
|
if (batch.n_tokens > 0) { |
|
|
|
|
|
llama_decode(ctx, batch); |
|
} |
|
|
|
const llama_pos n_past = prompt.size(); |
|
|
|
LOG_DBG("%s: n_past = %d\n", __func__, n_past); |
|
|
|
common_batch_clear(batch); |
|
common_batch_add (batch, id_last, n_past, { 0 }, true); |
|
|
|
prompt.push_back(id_last); |
|
|
|
|
|
|
|
llama_decode(ctx, batch); |
|
|
|
common_sampler_reset(smpl); |
|
|
|
|
|
for (int i = 0; i < params.n_draft; ++i) { |
|
common_batch_clear(batch); |
|
|
|
common_sampler_sample(smpl, ctx, 0, true); |
|
|
|
const auto * cur_p = common_sampler_get_candidates(smpl); |
|
|
|
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) { |
|
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n", |
|
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str()); |
|
} |
|
|
|
|
|
const llama_token id = cur_p->data[0].id; |
|
|
|
|
|
if (cur_p->data[0].p < params.p_min) { |
|
break; |
|
} |
|
|
|
common_sampler_accept(smpl, id, true); |
|
|
|
result.push_back(id); |
|
|
|
if (params.n_draft <= (int) result.size()) { |
|
break; |
|
} |
|
|
|
common_batch_add(batch, id, n_past + i + 1, { 0 }, true); |
|
|
|
|
|
llama_decode(ctx, batch); |
|
|
|
prompt.push_back(id); |
|
} |
|
|
|
return result; |
|
} |
|
|