Spaces:
Build error
Build error
Ensure progress bar works for multiple files
Browse files- app.py +23 -6
- src/source.py +22 -12
app.py
CHANGED
|
@@ -12,7 +12,7 @@ import numpy as np
|
|
| 12 |
|
| 13 |
import torch
|
| 14 |
from src.config import ApplicationConfig
|
| 15 |
-
from src.hooks.whisperProgressHook import ProgressListener, create_progress_listener_handle
|
| 16 |
from src.modelCache import ModelCache
|
| 17 |
from src.source import get_audio_source_collection
|
| 18 |
from src.vadParallel import ParallelContext, ParallelTranscription
|
|
@@ -135,9 +135,17 @@ class WhisperTranscriber:
|
|
| 135 |
|
| 136 |
outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
# Execute whisper
|
| 139 |
for source in sources:
|
| 140 |
source_prefix = ""
|
|
|
|
| 141 |
|
| 142 |
if (len(sources) > 1):
|
| 143 |
# Prefix (minimum 2 digits)
|
|
@@ -145,10 +153,18 @@ class WhisperTranscriber:
|
|
| 145 |
source_prefix = str(source_index).zfill(2) + "_"
|
| 146 |
print("Transcribing ", source.source_path)
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
# Transcribe
|
| 149 |
-
result = self.transcribe_file(model, source.source_path, selectedLanguage, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow,
|
| 150 |
filePrefix = slugify(source_prefix + source.get_short_name(), allow_unicode=True)
|
| 151 |
|
|
|
|
|
|
|
|
|
|
| 152 |
source_download, source_text, source_vtt = self.write_result(result, filePrefix, outputDirectory)
|
| 153 |
|
| 154 |
if len(sources) > 1:
|
|
@@ -209,19 +225,20 @@ class WhisperTranscriber:
|
|
| 209 |
|
| 210 |
def transcribe_file(self, model: WhisperContainer, audio_path: str, language: str, task: str = None, vad: str = None,
|
| 211 |
vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1,
|
| 212 |
-
|
| 213 |
|
| 214 |
initial_prompt = decodeOptions.pop('initial_prompt', None)
|
| 215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
if ('task' in decodeOptions):
|
| 217 |
task = decodeOptions.pop('task')
|
| 218 |
|
| 219 |
# Callable for processing an audio file
|
| 220 |
whisperCallable = model.create_callback(language, task, initial_prompt, **decodeOptions)
|
| 221 |
|
| 222 |
-
# A listener that will report progress to Gradio
|
| 223 |
-
progressListener = self._create_progress_listener(progress)
|
| 224 |
-
|
| 225 |
# The results
|
| 226 |
if (vad == 'silero-vad'):
|
| 227 |
# Silero VAD where non-speech gaps are transcribed
|
|
|
|
| 12 |
|
| 13 |
import torch
|
| 14 |
from src.config import ApplicationConfig
|
| 15 |
+
from src.hooks.whisperProgressHook import ProgressListener, SubTaskProgressListener, create_progress_listener_handle
|
| 16 |
from src.modelCache import ModelCache
|
| 17 |
from src.source import get_audio_source_collection
|
| 18 |
from src.vadParallel import ParallelContext, ParallelTranscription
|
|
|
|
| 135 |
|
| 136 |
outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory
|
| 137 |
|
| 138 |
+
# Progress
|
| 139 |
+
total_duration = sum([source.get_audio_duration() for source in sources])
|
| 140 |
+
current_progress = 0
|
| 141 |
+
|
| 142 |
+
# A listener that will report progress to Gradio
|
| 143 |
+
root_progress_listener = self._create_progress_listener(progress)
|
| 144 |
+
|
| 145 |
# Execute whisper
|
| 146 |
for source in sources:
|
| 147 |
source_prefix = ""
|
| 148 |
+
source_audio_duration = source.get_audio_duration()
|
| 149 |
|
| 150 |
if (len(sources) > 1):
|
| 151 |
# Prefix (minimum 2 digits)
|
|
|
|
| 153 |
source_prefix = str(source_index).zfill(2) + "_"
|
| 154 |
print("Transcribing ", source.source_path)
|
| 155 |
|
| 156 |
+
scaled_progress_listener = SubTaskProgressListener(root_progress_listener,
|
| 157 |
+
base_task_total=total_duration,
|
| 158 |
+
sub_task_start=current_progress,
|
| 159 |
+
sub_task_total=source_audio_duration)
|
| 160 |
+
|
| 161 |
# Transcribe
|
| 162 |
+
result = self.transcribe_file(model, source.source_path, selectedLanguage, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, scaled_progress_listener, **decodeOptions)
|
| 163 |
filePrefix = slugify(source_prefix + source.get_short_name(), allow_unicode=True)
|
| 164 |
|
| 165 |
+
# Update progress
|
| 166 |
+
current_progress += source_audio_duration
|
| 167 |
+
|
| 168 |
source_download, source_text, source_vtt = self.write_result(result, filePrefix, outputDirectory)
|
| 169 |
|
| 170 |
if len(sources) > 1:
|
|
|
|
| 225 |
|
| 226 |
def transcribe_file(self, model: WhisperContainer, audio_path: str, language: str, task: str = None, vad: str = None,
|
| 227 |
vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1,
|
| 228 |
+
progressListener: ProgressListener = None, **decodeOptions: dict):
|
| 229 |
|
| 230 |
initial_prompt = decodeOptions.pop('initial_prompt', None)
|
| 231 |
|
| 232 |
+
if progressListener is None:
|
| 233 |
+
# Default progress listener
|
| 234 |
+
progressListener = ProgressListener()
|
| 235 |
+
|
| 236 |
if ('task' in decodeOptions):
|
| 237 |
task = decodeOptions.pop('task')
|
| 238 |
|
| 239 |
# Callable for processing an audio file
|
| 240 |
whisperCallable = model.create_callback(language, task, initial_prompt, **decodeOptions)
|
| 241 |
|
|
|
|
|
|
|
|
|
|
| 242 |
# The results
|
| 243 |
if (vad == 'silero-vad'):
|
| 244 |
# Silero VAD where non-speech gaps are transcribed
|
src/source.py
CHANGED
|
@@ -12,15 +12,22 @@ from src.download import ExceededMaximumDuration, download_url
|
|
| 12 |
MAX_FILE_PREFIX_LENGTH = 17
|
| 13 |
|
| 14 |
class AudioSource:
|
| 15 |
-
def __init__(self, source_path, source_name = None):
|
| 16 |
self.source_path = source_path
|
| 17 |
self.source_name = source_name
|
|
|
|
| 18 |
|
| 19 |
# Load source name if not provided
|
| 20 |
if (self.source_name is None):
|
| 21 |
file_path = pathlib.Path(self.source_path)
|
| 22 |
self.source_name = file_path.name
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def get_full_name(self):
|
| 25 |
return self.source_name
|
| 26 |
|
|
@@ -53,18 +60,21 @@ def get_audio_source_collection(urlData: str, multipleFiles: List, microphoneDat
|
|
| 53 |
if (microphoneData is not None):
|
| 54 |
output.append(AudioSource(microphoneData))
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
total_duration += float(audioDuration)
|
| 63 |
|
| 64 |
-
# Ensure the total duration of the audio is not too long
|
| 65 |
-
if input_audio_max_duration > 0:
|
| 66 |
-
if float(total_duration) > input_audio_max_duration:
|
| 67 |
-
raise ExceededMaximumDuration(videoDuration=total_duration, maxDuration=input_audio_max_duration, message="Video(s) is too long")
|
| 68 |
-
|
| 69 |
# Return a list of audio sources
|
| 70 |
return output
|
|
|
|
| 12 |
MAX_FILE_PREFIX_LENGTH = 17
|
| 13 |
|
| 14 |
class AudioSource:
|
| 15 |
+
def __init__(self, source_path, source_name = None, audio_duration = None):
|
| 16 |
self.source_path = source_path
|
| 17 |
self.source_name = source_name
|
| 18 |
+
self._audio_duration = audio_duration
|
| 19 |
|
| 20 |
# Load source name if not provided
|
| 21 |
if (self.source_name is None):
|
| 22 |
file_path = pathlib.Path(self.source_path)
|
| 23 |
self.source_name = file_path.name
|
| 24 |
|
| 25 |
+
def get_audio_duration(self):
|
| 26 |
+
if self._audio_duration is None:
|
| 27 |
+
self._audio_duration = float(ffmpeg.probe(self.source_path)["format"]["duration"])
|
| 28 |
+
|
| 29 |
+
return self._audio_duration
|
| 30 |
+
|
| 31 |
def get_full_name(self):
|
| 32 |
return self.source_name
|
| 33 |
|
|
|
|
| 60 |
if (microphoneData is not None):
|
| 61 |
output.append(AudioSource(microphoneData))
|
| 62 |
|
| 63 |
+
total_duration = 0
|
| 64 |
+
|
| 65 |
+
# Calculate total audio length. We do this even if input_audio_max_duration
|
| 66 |
+
# is disabled to ensure that all the audio files are valid.
|
| 67 |
+
for source in output:
|
| 68 |
+
audioDuration = ffmpeg.probe(source.source_path)["format"]["duration"]
|
| 69 |
+
total_duration += float(audioDuration)
|
| 70 |
+
|
| 71 |
+
# Save audio duration
|
| 72 |
+
source._audio_duration = float(audioDuration)
|
| 73 |
|
| 74 |
+
# Ensure the total duration of the audio is not too long
|
| 75 |
+
if input_audio_max_duration > 0:
|
| 76 |
+
if float(total_duration) > input_audio_max_duration:
|
| 77 |
+
raise ExceededMaximumDuration(videoDuration=total_duration, maxDuration=input_audio_max_duration, message="Video(s) is too long")
|
|
|
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
# Return a list of audio sources
|
| 80 |
return output
|