|
import random |
|
import os |
|
from urllib.parse import urlencode |
|
|
|
|
|
import streamlit as st |
|
import streamlit.components.v1 as components |
|
import torch |
|
from transformers import pipeline, set_seed |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
print(f"Is CUDA available PLEASE: {torch.cuda.is_available()}") |
|
|
|
print( |
|
f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") |
|
|
|
|
|
HF_AUTH_TOKEN = "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" |
|
DEVICE = os.environ.get("cuda:0", "cpu") |
|
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16 |
|
MODEL_NAME = os.environ.get("MODEL_NAME", "NbAiLab/nb-gpt-j-6B-alpaca") |
|
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 256)) |
|
|
|
HEADER_INFO = """ |
|
# CBS_Alpaca-GPT-j |
|
Norwegian GPT-J-6B NorPaca Model. |
|
""".strip() |
|
LOGO = "https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Logo_CopenhagenBusinessSchool.svg/1200px-Logo_CopenhagenBusinessSchool.svg.png" |
|
SIDEBAR_INFO = f""" |
|
<div align=center> |
|
<img src="{LOGO}" width=100/> |
|
|
|
# NB-GPT-J-6B-NorPaca |
|
|
|
</div> |
|
|
|
NB-GPT-J-6B NorPaca is a hybrid of a GPT-3 and Llama model, trained on the Norwegian Colossal Corpus and other Internet sources. It is a 6.7 billion parameter model, and is the largest model in the GPT-J family. |
|
|
|
This model has been trained with [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) using TPUs provided by Google through the Tensor Research Cloud program, starting off the [GPT-J-6B model weigths from EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B), and trained on the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) and other Internet sources. *This demo runs on {DEVICE.split(':')[0].upper()}*. |
|
|
|
For more information, visit the [model repository](https://huggingface.co/CBSMasterThesis). |
|
|
|
## Configuration |
|
""".strip() |
|
PROMPT_BOX = "Enter your text..." |
|
EXAMPLES = [ |
|
"Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Analyser fordelene ved å jobbe i et team. ### Respons:", |
|
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Oppsummer den faglige artikkelen "Kunstig intelligens og arbeidets fremtid". ### Respons:', |
|
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Generer et kreativt slagord for en bedrift som bruker fornybare energikilder. ### Respons:', |
|
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Regn ut arealet av en firkant med lengde 10m. Skriv ut et flyttall. ### Respons:', |
|
] |
|
|
|
|
|
def style(): |
|
st.markdown(""" |
|
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet"> |
|
<style> |
|
.ltr, |
|
textarea { |
|
font-family: Roboto !important; |
|
text-align: left; |
|
direction: ltr !important; |
|
} |
|
.ltr-box { |
|
border-bottom: 1px solid #ddd; |
|
padding-bottom: 20px; |
|
} |
|
.rtl { |
|
text-align: left; |
|
direction: ltr !important; |
|
} |
|
span.result-text { |
|
padding: 3px 3px; |
|
line-height: 32px; |
|
} |
|
span.generated-text { |
|
background-color: rgb(118 200 147 / 13%); |
|
} |
|
</style>""", unsafe_allow_html=True) |
|
|
|
|
|
class Normalizer: |
|
def remove_repetitions(self, text): |
|
"""Remove repetitions""" |
|
first_ocurrences = [] |
|
for sentence in text.split("."): |
|
if sentence not in first_ocurrences: |
|
first_ocurrences.append(sentence) |
|
return '.'.join(first_ocurrences) |
|
|
|
def trim_last_sentence(self, text): |
|
"""Trim last sentence if incomplete""" |
|
return text[:text.rfind(".") + 1] |
|
|
|
def clean_txt(self, text): |
|
return self.trim_last_sentence(self.remove_repetitions(text)) |
|
|
|
|
|
class TextGeneration: |
|
def __init__(self): |
|
self.tokenizer = None |
|
self.generator = None |
|
self.task = "text-generation" |
|
self.model_name_or_path = MODEL_NAME |
|
set_seed(42) |
|
|
|
def load(self): |
|
print("Loading model... ", end="") |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None, |
|
) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None, |
|
pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id, |
|
torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True |
|
).to(device=DEVICE, non_blocking=True) |
|
_ = self.model.eval() |
|
device_number = -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1]) |
|
self.generator = pipeline( |
|
self.task, model=self.model, tokenizer=self.tokenizer, device=device_number) |
|
print("Done") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate(self, prompt, generation_kwargs): |
|
max_length = len(self.tokenizer(prompt)[ |
|
"input_ids"]) + generation_kwargs["max_length"] |
|
generation_kwargs["max_length"] = min( |
|
max_length, self.model.config.n_positions) |
|
|
|
|
|
return self.generator( |
|
prompt, |
|
**generation_kwargs, |
|
)[0]["generated_text"] |
|
|
|
|
|
|
|
@st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None}) |
|
def load_text_generator(): |
|
generator = TextGeneration() |
|
generator.load() |
|
return generator |
|
|
|
|
|
def main(): |
|
st.set_page_config( |
|
page_title="NB-GPT-J-6B-NorPaca", |
|
page_icon="🇳🇴", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
style() |
|
with st.spinner('Loading the model. Please, wait...'): |
|
generator = load_text_generator() |
|
|
|
st.sidebar.markdown(SIDEBAR_INFO, unsafe_allow_html=True) |
|
query_params = st.experimental_get_query_params() |
|
if query_params: |
|
st.experimental_set_query_params(**dict()) |
|
|
|
max_length = st.sidebar.slider( |
|
label='Max words to generate', |
|
help="The maximum length of the sequence to be generated.", |
|
min_value=1, |
|
max_value=MAX_LENGTH, |
|
value=int(query_params.get("max_length", [50])[0]), |
|
step=1 |
|
) |
|
top_k = st.sidebar.slider( |
|
label='Top-k', |
|
help="The number of highest probability vocabulary tokens to keep for top-k-filtering", |
|
min_value=40, |
|
max_value=80, |
|
value=int(query_params.get("top_k", [50])[0]), |
|
step=1 |
|
) |
|
top_p = st.sidebar.slider( |
|
label='Top-p', |
|
help="Only the most probable tokens with probabilities that add up to `top_p` or higher are kept for " |
|
"generation.", |
|
min_value=0.0, |
|
max_value=1.0, |
|
value=float(query_params.get("top_p", [0.95])[0]), |
|
step=0.01 |
|
) |
|
temperature = st.sidebar.slider( |
|
label='Temperature', |
|
help="The value used to module the next token probabilities", |
|
min_value=0.1, |
|
max_value=10.0, |
|
value=float(query_params.get("temperature", [0.8])[0]), |
|
step=0.05 |
|
) |
|
do_sample = st.sidebar.selectbox( |
|
label='Sampling?', |
|
options=(False, True), |
|
help="Whether or not to use sampling; use greedy decoding otherwise.", |
|
index=int(query_params.get("do_sample", ["true"])[ |
|
0].lower()[0] in ("t", "y", "1")), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generation_kwargs = { |
|
"max_length": max_length, |
|
"top_k": top_k, |
|
"top_p": top_p, |
|
"temperature": temperature, |
|
"do_sample": do_sample, |
|
|
|
} |
|
st.markdown(HEADER_INFO) |
|
prompts = EXAMPLES + ["Custom"] |
|
prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1) |
|
|
|
if prompt == "Custom": |
|
prompt_box = query_params.get("text", [PROMPT_BOX])[0].strip() |
|
else: |
|
prompt_box = prompt |
|
|
|
text = st.text_area("Enter text", prompt_box) |
|
generation_kwargs_ph = st.empty() |
|
cleaner = Normalizer() |
|
if st.button("Generate!") or text != PROMPT_BOX: |
|
output = st.empty() |
|
with st.spinner(text="Generating..."): |
|
generation_kwargs_ph.markdown( |
|
", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()])) |
|
if text: |
|
share_args = {"text": text, **generation_kwargs} |
|
st.experimental_set_query_params(**share_args) |
|
for _ in range(5): |
|
generated_text = generator.generate( |
|
text, generation_kwargs) |
|
|
|
|
|
if generated_text.strip().startswith(text): |
|
generated_text = generated_text.replace( |
|
text, "", 1).strip() |
|
output.markdown( |
|
f'<p class="ltr ltr-box">' |
|
f'<span class="result-text">{text} <span>' |
|
f'<span class="result-text generated-text">{generated_text}</span>' |
|
f'</p>', |
|
unsafe_allow_html=True |
|
) |
|
if generated_text.strip(): |
|
components.html( |
|
f""" |
|
<a class="twitter-share-button" |
|
data-text="Check my prompt using NB-GPT-J-6B-NorPaca!🇳🇴 https://ai.nb.no/demo/nb-gpt-j-6B-NorPaca/?{urlencode(share_args)}" |
|
data-show-count="false"> |
|
data-size="Small" |
|
data-hashtags="nb,gpt-j" |
|
Tweet |
|
</a> |
|
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> |
|
""" |
|
) |
|
break |
|
if not generated_text.strip(): |
|
st.markdown( |
|
"*Tried 5 times but did not produce any result. Try again!*") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|